4 resultados para EAD Finding Aids
em Collection Of Biostatistics Research Archive
Resumo:
Jewell and Kalbfleisch (1992) consider the use of marker processes for applications related to estimation of the survival distribution of time to failure. Marker processes were assumed to be stochastic processes that, at a given point in time, provide information about the current hazard and consequently on the remaining time to failure. Particular attention was paid to calculations based on a simple additive model for the relationship between the hazard function at time t and the history of the marker process up until time t. Specific applications to the analysis of AIDS data included the use of markers as surrogate responses for onset of AIDS with censored data and as predictors of the time elapsed since infection in prevalent individuals. Here we review recent work on the use of marker data to tackle these kinds of problems with AIDS data. The Poisson marker process with an additive model, introduced in Jewell and Kalbfleisch (1992) may be a useful "test" example for comparison of various procedures.
Resumo:
Backcalculation is the primary method used to reconstruct past human immunodeficiency virus (HIV) infection rates, to estimate current prevalence of HIV infection, and to project future incidence of acquired immunodeficiency syndrome (AIDS). The method is very sensitive to uncertainty about the incubation period. We estimate incubation distributions from three sets of cohort data and find that the estimates for the cohorts are substantially different. Backcalculations employing the different estimates produce equally good fits to reported AIDS counts but quite different estimates of cumulative infections. These results suggest that the incubation distribution is likely to differ for different populations and that the differences are large enough to have a big impact on the resulting estimates of HIV infection rates. This seriously limits the usefulness of backcalculation for populations (such as intravenous drug users, heterosexuals, and women) that lack precise information on incubation times.
Resumo:
We analyze three sets of doubly-censored cohort data on incubation times, estimating incubation distributions using semi-parametric methods and assessing the comparability of the estimates. Weibull models appear to be inappropriate for at least one of the cohorts, and the estimates for the different cohorts are substantially different. We use these estimates as inputs for backcalculation, using a nonparametric method based on maximum penalized likelihood. The different incubations all produce fits to the reported AIDS counts that are as good as the fit from a nonstationary incubation distribution that models treatment effects, but the estimated infection curves are very different. We also develop a method for estimating nonstationarity as part of the backcalculation procedure and find that such estimates also depend very heavily on the assumed incubation distribution. We conclude that incubation distributions are so uncertain that meaningful error bounds are difficult to place on backcalculated estimates and that backcalculation may be too unreliable to be used without being supplemented by other sources of information in HIV prevalence and incidence.
Resumo:
The Continual Reassessment Method (CRM) has gained popularity since its proposal by O’Quigley et al. [1]. Many variations have been published and discussed in the statistical literature, but there has been little attention to making the design considerations accessible to non-statisticians. As a result, some clinicians or reviewers of clinical trials tend to be wary of the CRM due to safety concerns. This paper presents the CRM in a non-technical way, describing the original CRM with some of its modified versions. It also describes the specifications that define a CRM design, along with two simulated examples of CRMs for illustration.