5 resultados para Binary hypothesis testing
em Collection Of Biostatistics Research Archive
Resumo:
Estimation of breastmilk infectivity in HIV-1 infected mothers is difficult because transmission can occur while the fetus is in-utero, during delivery, or through breastfeeding. Since transmission can only be detected through periodic testing, however, it may be impossible to determine the actual mode of transmission in any individual child. In this paper we develop a model to estimate breastmilk infectivity as well as the probabilities of in-utero and intrapartum transmission. In addition, the model allows separate estimation of early and late breastmilk infectivity and individual variation in maternal infectivity. Methods for hypothesis testing of binary risk factors and a method for assessing goodness of fit are also described. Data from a randomized trial of breastfeeding versus formula feeding among HIV-1 infected mothers in Nairobi, Kenya are used to illustrate the methods.
Resumo:
Equivalence testing is growing in use in scientific research outside of its traditional role in the drug approval process. Largely due to its ease of use and recommendation from the United States Food and Drug Administration guidance, the most common statistical method for testing (bio)equivalence is the two one-sided tests procedure (TOST). Like classical point-null hypothesis testing, TOST is subject to multiplicity concerns as more comparisons are made. In this manuscript, a condition that bounds the family-wise error rate (FWER) using TOST is given. This condition then leads to a simple solution for controlling the FWER. Specifically, we demonstrate that if all pairwise comparisons of k independent groups are being evaluated for equivalence, then simply scaling the nominal Type I error rate down by (k - 1) is sufficient to maintain the family-wise error rate at the desired value or less. The resulting rule is much less conservative than the equally simple Bonferroni correction. An example of equivalence testing in a non drug-development setting is given.
Resumo:
Bioequivalence trials are abbreviated clinical trials whereby a generic drug or new formulation is evaluated to determine if it is "equivalent" to a corresponding previously approved brand-name drug or formulation. In this manuscript, we survey the process of testing bioequivalence and advocate the likelihood paradigm for representing the resulting data as evidence. We emphasize the unique conflicts between hypothesis testing and confidence intervals in this area - which we believe are indicative of the existence of the systemic defects in the frequentist approach - that the likelihood paradigm avoids. We suggest the direct use of profile likelihoods for evaluating bioequivalence and examine the main properties of profile likelihoods and estimated likelihoods under simulation. This simulation study shows that profile likelihoods are a reasonable alternative to the (unknown) true likelihood for a range of parameters commensurate with bioequivalence research. Our study also shows that the standard methods in the current practice of bioequivalence trials offers only weak evidence from the evidential point of view.
Resumo:
An optimal multiple testing procedure is identified for linear hypotheses under the general linear model, maximizing the expected number of false null hypotheses rejected at any significance level. The optimal procedure depends on the unknown data-generating distribution, but can be consistently estimated. Drawing information together across many hypotheses, the estimated optimal procedure provides an empirical alternative hypothesis by adapting to underlying patterns of departure from the null. Proposed multiple testing procedures based on the empirical alternative are evaluated through simulations and an application to gene expression microarray data. Compared to a standard multiple testing procedure, it is not unusual for use of an empirical alternative hypothesis to increase by 50% or more the number of true positives identified at a given significance level.