19 resultados para Conditional autoregressive random effects model
Resumo:
Quantifying the health effects associated with simultaneous exposure to many air pollutants is now a research priority of the US EPA. Bayesian hierarchical models (BHM) have been extensively used in multisite time series studies of air pollution and health to estimate health effects of a single pollutant adjusted for potential confounding of other pollutants and other time-varying factors. However, when the scientific goal is to estimate the impacts of many pollutants jointly, a straightforward application of BHM is challenged by the need to specify a random-effect distribution on a high-dimensional vector of nuisance parameters, which often do not have an easy interpretation. In this paper we introduce a new BHM formulation, which we call "reduced BHM", aimed at analyzing clustered data sets in the presence of a large number of random effects that are not of primary scientific interest. At the first stage of the reduced BHM, we calculate the integrated likelihood of the parameter of interest (e.g. excess number of deaths attributed to simultaneous exposure to high levels of many pollutants). At the second stage, we specify a flexible random-effect distribution directly on the parameter of interest. The reduced BHM overcomes many of the challenges in the specification and implementation of full BHM in the context of a large number of nuisance parameters. In simulation studies we show that the reduced BHM performs comparably to the full BHM in many scenarios, and even performs better in some cases. Methods are applied to estimate location-specific and overall relative risks of cardiovascular hospital admissions associated with simultaneous exposure to elevated levels of particulate matter and ozone in 51 US counties during the period 1999-2005.
Resumo:
Latent class analysis (LCA) and latent class regression (LCR) are widely used for modeling multivariate categorical outcomes in social sciences and biomedical studies. Standard analyses assume data of different respondents to be mutually independent, excluding application of the methods to familial and other designs in which participants are clustered. In this paper, we develop multilevel latent class model, in which subpopulation mixing probabilities are treated as random effects that vary among clusters according to a common Dirichlet distribution. We apply the Expectation-Maximization (EM) algorithm for model fitting by maximum likelihood (ML). This approach works well, but is computationally intensive when either the number of classes or the cluster size is large. We propose a maximum pairwise likelihood (MPL) approach via a modified EM algorithm for this case. We also show that a simple latent class analysis, combined with robust standard errors, provides another consistent, robust, but less efficient inferential procedure. Simulation studies suggest that the three methods work well in finite samples, and that the MPL estimates often enjoy comparable precision as the ML estimates. We apply our methods to the analysis of comorbid symptoms in the Obsessive Compulsive Disorder study. Our models' random effects structure has more straightforward interpretation than those of competing methods, thus should usefully augment tools available for latent class analysis of multilevel data.
Resumo:
Generalized linear mixed models (GLMM) are generalized linear models with normally distributed random effects in the linear predictor. Penalized quasi-likelihood (PQL), an approximate method of inference in GLMMs, involves repeated fitting of linear mixed models with “working” dependent variables and iterative weights that depend on parameter estimates from the previous cycle of iteration. The generality of PQL, and its implementation in commercially available software, has encouraged the application of GLMMs in many scientific fields. Caution is needed, however, since PQL may sometimes yield badly biased estimates of variance components, especially with binary outcomes. Recent developments in numerical integration, including adaptive Gaussian quadrature, higher order Laplace expansions, stochastic integration and Markov chain Monte Carlo (MCMC) algorithms, provide attractive alternatives to PQL for approximate likelihood inference in GLMMs. Analyses of some well known datasets, and simulations based on these analyses, suggest that PQL still performs remarkably well in comparison with more elaborate procedures in many practical situations. Adaptive Gaussian quadrature is a viable alternative for nested designs where the numerical integration is limited to a small number of dimensions. Higher order Laplace approximations hold the promise of accurate inference more generally. MCMC is likely the method of choice for the most complex problems that involve high dimensional integrals.
Resumo:
Increasingly, regression models are used when residuals are spatially correlated. Prominent examples include studies in environmental epidemiology to understand the chronic health effects of pollutants. I consider the effects of residual spatial structure on the bias and precision of regression coefficients, developing a simple framework in which to understand the key issues and derive informative analytic results. When the spatial residual is induced by an unmeasured confounder, regression models with spatial random effects and closely-related models such as kriging and penalized splines are biased, even when the residual variance components are known. Analytic and simulation results show how the bias depends on the spatial scales of the covariate and the residual; bias is reduced only when there is variation in the covariate at a scale smaller than the scale of the unmeasured confounding. I also discuss how the scales of the residual and the covariate affect efficiency and uncertainty estimation when the residuals can be considered independent of the covariate. In an application on the association between black carbon particulate matter air pollution and birth weight, controlling for large-scale spatial variation appears to reduce bias from unmeasured confounders, while increasing uncertainty in the estimated pollution effect.