2 resultados para crystal purity

em Bucknell University Digital Commons - Pensilvania - USA


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 3 angstrom resolution crystal structure of the Escherichia coli catabolite gene activator protein (CAP) complexed with a 30-base pair DNA sequence shows that the DNA is bent by 900. This bend results almost entirely from two 400 kinks that occur between TG/CA base pairs at positions 5 and 6 on each side of the dyad axis of the complex. DNA sequence discrimination by CAP derives both from sequence-dependent distortion of the DNA helix and from direct hydrogen-bonding interactions between three protein side chains and the exposed edges of three base pairs in the major groove of the DNA. The structure of this transcription factor-DNA complex provides insights into possible mechanisms of transcription activation

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many industrial solids processes require the production of disperse particles. In industries such as food, personal care, and pharmaceuticals, particle formation is widely used to produce solid products or to separate substances in intermediate process steps. The most important characteristics known to impact the effectiveness of a solid product are purity, size, internal structure, and morphology. These characteristics are essential to maintain optimal operation of subsequent process steps and for obtaining the desired high quality product. This thesis aims to aid in the advancement of particle production technology by (1) investigating the use of a vibrating orifice aerosol generator (VOAG) for collecting data to predict particle attributes including morphology, size, and internal structure as a function of processing parameters such as solvent, solution concentration, air flow rate, and initial droplet size, as well as to (2) determine the extent to which uniform droplet evaporation can be a tool to achieve novel particle morphologies, controlled sizes, or internal structures (crystallinity and crystal form). Experimental results for succinic acid, L-serine, and L-glutamic acid suggest that particles of controlled characteristics can indeed be produced by this method. Analysis by scanning electron microscopy (SEM), nanoindentation, and X-ray diffraction (XRD) shows that various sizes, internal structures, and morphologies can be obtained using the VOAG. Furthermore, unique morphologies and unexpected internal structures were able to be achieved for succinic acid, providing an added benefit to particle formation by this method.