2 resultados para Crystal atomic structure
em Bucknell University Digital Commons - Pensilvania - USA
Resumo:
The particle sizes, morphologies, and structures are presented for succinic acid particles formed from the evaporation of uniform droplets created with a vibrating orifice aerosol generator. Particle sizes are monodisperse, and solvent choice is found to be the dominant factor in determining the final morphology and structure. The external particle morphologies range from round to cap shaped, while the surface roughness ranges from fairly smooth to extremely rough and pitted. Internally, the particles have significant void space and noticeable crystals. X-ray diffraction confirms that the particles are crystalline. Thus, the morphologies of the particles take on a crystal filled structure that is unique in comparison to previous particles formed through droplet evaporation. The structure of the particles contains β succinic acid; however, the particles formed from water also contain α succinic acid. α Succinic acid has not previously been able to be formed from solution at near atmospheric conditions. The unique morphologies and ability to identify unexpected polymorphs provide for a potential tool to not only enhance particle engineering but also to identify metastable polymorphs.
Resumo:
The 3 angstrom resolution crystal structure of the Escherichia coli catabolite gene activator protein (CAP) complexed with a 30-base pair DNA sequence shows that the DNA is bent by 900. This bend results almost entirely from two 400 kinks that occur between TG/CA base pairs at positions 5 and 6 on each side of the dyad axis of the complex. DNA sequence discrimination by CAP derives both from sequence-dependent distortion of the DNA helix and from direct hydrogen-bonding interactions between three protein side chains and the exposed edges of three base pairs in the major groove of the DNA. The structure of this transcription factor-DNA complex provides insights into possible mechanisms of transcription activation