4 resultados para Brains.
em Bucknell University Digital Commons - Pensilvania - USA
Resumo:
The purpose of the current research project is to design a successful in-situ hybridization to identify regions within the brains of honeybees where DWV replicates. The localization of the virus in the brains of the bees can draw a connection between CCDand DWV.In conclusion, these results demonstrate that in bees infected with DWV the virus replicates actively in very important regions of the brain, including neuropils that are responsible for vision and olfaction. This means that the virus could adversely affect the vision and olfaction of the honeybees making it difficult for bees to behave normally.
Resumo:
Primates as a taxonomic Order have the largest brains corrected for body size in the animal kingdom. These large brains have allowed primates to evolve the capacity to demonstrate advanced cognitive processes across a wide array of abilities. Nonhuman primates are particularly adept at social learning, defined as the modification of behavior by observing the actions of others. Additionally, primates often exploit resources differently depending on their social context. In this study, capuchin monkeys (Cebus apella) were tested on a cognitive task in three social contexts to determine if social context influenced their performance on the task. The three social contexts included: alone, having a dominant individual in an adjacent compartment, and having a subordinate individual in the adjacent compartment. The benefits to this design were thatthe social context was the only variable influencing performance, whereas in previous studies investigating audience effects other animals could physically and directly influence a subject's performance in an open testing situation. Based on past studies, Ipredicted that the presence of a dominant individual would reduce cognitive task performance compared to the other conditions. The cognitive test used was a match-tosample discrimination task in which animals matched combinations of eight geometric shapes. Animals were trained on this task in an isolated context until they reached a baseline level of proficiency and were then tested in the three social contexts in a random order multiple times. Two subjects (Mt and Dv) have successfully completed trials under all conditions. Results indicated that there were no significant difference in taskperformance across the three conditions (Dv x^2 (1) = 0.42, p=0.58; Mt x^2 (1) = 0.02, p=0.88). In all conditions, subjects performed significantly above chance (i.e., 39/60 trials determined by a binomial distribution). Results are contrary to previous studies thatreport low status monkeys 'play dumb' when testing in a mixed social context, possibly because other studies did not account for aggressive interference by dominants while testing. Results of this study suggest that the mere presence of a dominant individualdoes not necessarily affect performance on a cognitive task, but rather the imminence of physical aggression is the most important factor influencing testing in a social context.
Resumo:
To elucidate the individual roles of the four Broad-Complex (BR-C) isoforms, Z1-Z4, on neuronal composition in the mushroom body, I undertook a series of overexpression experiments and created tools for knockdown experiments. Specifically, I imaged and analyzed Drosophila brains from earlier experiments in which BR-C isoforms Z1 and Z3 were individually overexpressed in the MB. The knockdown experiments required the creation of the molecular tools necessary for isoform-specific RNA interference (RNAi). For these I performed PCR to amplify DNA sequences unique to each isoform and inserted those into the pWIZ vector, which will permit expression of loopless hairpin double stranded RNA to trigger the RNAi pathway in the fly.
Resumo:
The purpose of our study is to investigate the effects of chronic estrogen administration on same-sex interactions during exposure to a social stressor and on oxytocin (OT) levels in prairie voles (Microtus orchrogaster). Estrogen and OT are two hormones known to be involved with social behavior and stress. Estogen is involved in the transcription of OT and its receptor. Because of this, it is generally thought that estrogen upregulates OT, but evidence to support this assumption is weak. While estrogen has been shown to either increase or decrease stress, OT has been shown to have stress-dampening properties. The goal of our experiment is to determine how estrogen affects OT levels as well as behavior in a social stressor in the voles. In addition, estrogen is required for many opposite-sex interactions, but little is known about its influence on same-sex interactions. We hypothesized that prairie voles receiving chronic estrogen injections would show an increase in OT levels in the brain and alter behavior in response to a social stressor called the resident-intruder test. To test this hypothesis, 73 female prairie voles were ovariectomized and then administered daily injections of estrogen (0.05 ¿g in peanut oil, s.c.) or vehicle for 8 days. On the final day of injections, half of the voles were given the resident-intruder test, a stressful 5 min interaction with a same-sex stranger. Their behavior was video-recorded. These animals were then sacrificed either 10 minutes or 60 minutes after the conclusion of the test. Half of the animals (no stress group) were not given the resident-intruder test. After sacrifice, trunk blood and brains were collected from the animals. Videos of the resident-intruder tests were analyzed for pro-social and aggressive behavior. Density of OT-activated neurons in the brain was measured via pixel count using immunohistochemistry. No differences were found in pro-social behavior (focal sniffing, p = 0.242; focal initiated sniffing p = 0.142; focal initiated sniffing/focal sniffing, p = 0.884) or aggressive behavior (total time fighting, p= 0.763; number of fights, p= 0.148; number of strikes, p = 0.714). No differences were found in activation of OT neurons in the brain, neither in the anterior paraventricular nucleus (PVN) (pixel count p= 0.358; % area that contains pixelated neurons p = 0.443) nor in the medial PVN (pixel count p= 0.999; % area that contains pixelated neurons p = 0.916). These results suggest that estrogen most likely does not directly upregulate OT and that estrogen does not alter behavior in stressful social interactions with a same-sex stranger. Estrogen may prepare the animal to respond to OT, instead of increasing the production of the peptide itself, suggesting that we need to shift the framework in which we consider estrogen and OT interactions.