22 resultados para nonparametric bounds
em BORIS: Bern Open Repository and Information System - Berna - Sui
Bounds on an anomalous dijet resonance in W+jets production in p pbar collisions at sqrt{s}=1.96 TeV
Resumo:
Justification Logic studies epistemic and provability phenomena by introducing justifications/proofs into the language in the form of justification terms. Pure justification logics serve as counterparts of traditional modal epistemic logics, and hybrid logics combine epistemic modalities with justification terms. The computational complexity of pure justification logics is typically lower than that of the corresponding modal logics. Moreover, the so-called reflected fragments, which still contain complete information about the respective justification logics, are known to be in~NP for a wide range of justification logics, pure and hybrid alike. This paper shows that, under reasonable additional restrictions, these reflected fragments are NP-complete, thereby proving a matching lower bound. The proof method is then extended to provide a uniform proof that the corresponding full pure justification logics are $\Pi^p_2$-hard, reproving and generalizing an earlier result by Milnikel.
Resumo:
In this note, we show that an extension of a test for perfect ranking in a balanced ranked set sample given by Li and Balakrishnan (2008) to the multi-cycle case turns out to be equivalent to the test statistic proposed by Frey et al. (2007). This provides an alternative interpretation and motivation for their test statistic.
Resumo:
Localized Magnetic Resonance Spectroscopy (MRS) is in widespread use for clinical brain research. Standard acquisition sequences to obtain one-dimensional spectra suffer from substantial overlap of spectral contributions from many metabolites. Therefore, specially tuned editing sequences or two-dimensional acquisition schemes are applied to extend the information content. Tuning specific acquisition parameters allows to make the sequences more efficient or more specific for certain target metabolites. Cramér-Rao bounds have been used in other fields for optimization of experiments and are now shown to be very useful as design criteria for localized MRS sequence optimization. The principle is illustrated for one- and two-dimensional MRS, in particular the 2D separation experiment, where the usual restriction to equidistant echo time spacings and equal acquisition times per echo time can be abolished. Particular emphasis is placed on optimizing experiments for quantification of GABA and glutamate. The basic principles are verified by Monte Carlo simulations and in vivo for repeated acquisitions of generalized two-dimensional separation brain spectra obtained from healthy subjects and expanded by bootstrapping for better definition of the quantification uncertainties.
Resumo:
We obtain eigenvalue enclosures and basisness results for eigen- and associated functions of a non-self-adjoint unbounded linear operator pencil A−λBA−λB in which BB is uniformly positive and the essential spectrum of the pencil is empty. Both Riesz basisness and Bari basisness results are obtained. The results are applied to a system of singular differential equations arising in the study of Hagen–Poiseuille flow with non-axisymmetric disturbances.
Resumo:
We derive explicit lower and upper bounds for the probability generating functional of a stationary locally stable Gibbs point process, which can be applied to summary statistics such as the F function. For pairwise interaction processes we obtain further estimates for the G and K functions, the intensity, and higher-order correlation functions. The proof of the main result is based on Stein's method for Poisson point process approximation.