39 resultados para two-dimensional correlation spectroscopy
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The self-assembly and redox-properties of two viologen derivatives, N-hexyl-N-(6-thiohexyl)-4,4-bipyridinium bromide (HS-6V6-H) and N,N-bis(6-thiohexyl)-4,4-bipyridinium bromide (HS-6V6-SH), immobilized on Au(111)-(1x1) macro-electrodes were investigated by cyclic voltammetry, surface enhanced infrared spectroscopy (SEIRAS) and in situ scanning tunneling microscopy (STM). Depending on the assembly conditions one could distinguish three different types of adlayers for both viologens: a low coverage disordered and an ordered striped phase of flat oriented molecules as well as a high coverage monolayer composed of tilted viologen moieties. Both molecules, HS-6V6-H and HS-6V6-SH, were successfully immobilized on Au(poly) nano-electrodes, which gave a well-defined redox-response in the lower pA–current range. An in situ STM configuration was employed to explore electron transport properties of single molecule junctions Au(T)|HS-6V6-SH(HS-6V6-H)|Au(S). The observed sigmoidal potential dependence, measured at variable substrate potential ES and at constant bias voltage (ET–ES), was attributed to electronic structure changes of the viologen moiety during the one-electron reduction/re-oxidation process V2+ V+. Tunneling experiments in asymmetric, STM-based junctions Au(T)-S-6V6-H|Au(S) revealed current (iT)–voltage (ET) curves with a maximum located at the equilibrium potential of the redox-process V2+ V+. The experimental iT–ET characteristics of the HS-6V6-H–modified tunneling junction were tentatively attributed to a sequential two-step electron transfer mechanism.
Resumo:
The aim of this study was to validate oxygen-sensitive 3He-MRI in noninvasive determination of the regional, two- and three-dimensional distribution of oxygen partial pressure. In a gas-filled elastic silicon ventilation bag used as a lung phantom, oxygen sensitive two- and three-dimensional 3He-MRI measurements were performed at different oxygen concentrations which had been equilibrated in a range of normal and pathologic values. The oxygen partial pressure distribution was determined from 3He-MRI using newly developed software allowing for mapping of oxygen partial pressure. The reference bulk oxygen partial pressure inside the phantom was measured by conventional respiratory gas analysis. In two-dimensional measurements, image-based and gas-analysis results correlated with r=0.98; in three-dimensional measurements the between-methods correlation coefficient was r=0.89. The signal-to-noise ratio of three-dimensional measurements was about half of that of two-dimensional measurements and became critical (below 3) in some data sets. Oxygen-sensitive 3He-MRI allows for noninvasive determination of the two- and three-dimensional distribution of oxygen partial pressure in gas-filled airspaces.
Resumo:
Purpose: Traditionally, the proximal isovelocity surface area (PISA) is based on the assumption of a single hemisphere (hemispheric PISA), but this technique has not been validated for the quantification of mitral regurgitation (MR) with multiple jets. Methods: The left heart simulator was actuated by a pulsatile pump at various stroke amplitudes. The regurgitant volume (Rvol) passing through the mitral valve phantoms with single and double regurgitant orifices of varying size and interspace was quantified by a flowmeter as reference technique. Color Doppler 3-D full-volumes were obtained, and Rvol were derived from 2-D PISA surfaces on the basis of hemispheric and hemicylindric assumption with one base (partial hemicylindric PISA) or 2 bases (total hemicylindric PISA). Results: 72 regurgitant volumes (Rvol range: 8 to 76 ml/beat) were obtained. Hemispheric PISA Rvol correlated well with reference Rvol by one orifice (R²=0.97; bias -2.7±3.2ml), but less by ≥ one orifice (R²=0.89). When a fusion of two PISAs occured, addition of two hemispheric PISA overestimated Rvol (bias 9.1±12.2ml, fig.1), and single hemispheric PISA underestimated Rvol (bias -12.4±4.9ml). If an integrated approach was used (hemispheric in single orifice, total hemicylindric in two non-fused PISAs and partial hemicylindric in two fused PISAs), the correlation was R²=0.95, bias -1.6±5.6ml (fig.2). In the ROC analysis, the cutoff to detect ≥ moderate-to-severe Rvol (≥45ml) was 42ml (AUC 0.99, sens. 100%, spec. 93%). Conclusions: In MR with two regurgitant jets, the 2-D hemicylindric assumption of the PISA offers a better quantification of Rvol than the hemispheric assumption. Quantification of MR using 2-D PISA requires an integrated approach that considers number of regurgitant orifices and fusion of the PISAs.
Resumo:
To propose the determination of the macromolecular baseline (MMBL) in clinical 1H MR spectra based on T(1) and T(2) differentiation using 2D fitting in FiTAID, a general Fitting Tool for Arrays of Interrelated Datasets.
Resumo:
Fully controlled liquid injection and flow in hydrophobic polydimethylsiloxane (PDMS) two-dimensional microchannel arrays based on on-chip integrated, low-voltage-driven micropumps are demonstrated. Our architecture exploits the surface-acoustic-wave (SAW) induced counterflow mechanism and the effect of nebulization anisotropies at crossing areas owing to lateral propagating SAWs. We show that by selectively exciting single or multiple SAWs, fluids can be drawn from their reservoirs and moved towards selected positions of a microchannel grid. Splitting of the main liquid flow is also demonstrated by exploiting multiple SAW beams. As a demonstrator, we show simultaneous filling of two orthogonal microchannels. The present results show that SAW micropumps are good candidates for truly integrated on-chip fluidic networks allowing liquid control in arbitrarily shaped two-dimensional microchannel arrays.
Resumo:
This paper describes informatics for cross-sample analysis with comprehensive two-dimensional gas chromatography (GCxGC) and high-resolution mass spectrometry (HRMS). GCxGC-HRMS analysis produces large data sets that are rich with information, but highly complex. The size of the data and volume of information requires automated processing for comprehensive cross-sample analysis, but the complexity poses a challenge for developing robust methods. The approach developed here analyzes GCxGC-HRMS data from multiple samples to extract a feature template that comprehensively captures the pattern of peaks detected in the retention-times plane. Then, for each sample chromatogram, the template is geometrically transformed to align with the detected peak pattern and generate a set of feature measurements for cross-sample analyses such as sample classification and biomarker discovery. The approach avoids the intractable problem of comprehensive peak matching by using a few reliable peaks for alignment and peak-based retention-plane windows to define comprehensive features that can be reliably matched for cross-sample analysis. The informatics are demonstrated with a set of 18 samples from breast-cancer tumors, each from different individuals, six each for Grades 1-3. The features allow classification that matches grading by a cancer pathologist with 78% success in leave-one-out cross-validation experiments. The HRMS signatures of the features of interest can be examined for determining elemental compositions and identifying compounds.
Resumo:
For understanding the major- and minor-groove hydration patterns of DNAs and RNAs, it is important to understand the local solvation of individual nucleobases at the molecular level. We have investigated the 2-aminopurine center dot H2O. monohydrate by two-color resonant two-photon ionization and UV/UV hole-burning spectroscopies, which reveal two isomers, denoted A and B. The electronic spectral shift delta nu of the S-1 <- S-0 transition relative to bare 9H-2-aminopurine (9H-2AP) is small for isomer A (-70 cm(-1)), while that of isomer B is much larger (delta nu = 889 cm(-1)). B3LYP geometry optimizations with the TZVP basis set predict four cluster isomers, of which three are doubly H-bonded, with H2O acting as an acceptor to a N-H or -NH2 group and as a donor to either of the pyrimidine N sites. The "sugar-edge" isomer A is calculated to be the most stable form with binding energy D-e = 56.4 kJ/mol. Isomers B and C are H-bonded between the -NH2 group and pyrimidine moieties and are 2.5 and 6.9 kJ/mol less stable, respectively. Time-dependent (TD) B3LYP/TZVP calculations predict the adiabatic energies of the lowest (1)pi pi* states of A and B in excellent agreement with the observed 0(0)(0) bands; also, the relative intensities of the A and B origin bands agree well with the calculated S-0 state relative energies. This allows unequivocal identification of the isomers. The R2PI spectra of 9H-2AP and of isomer A exhibit intense low-frequency out-of-plane overtone and combination bands, which is interpreted as a coupling of the optically excited (1)pi pi* state to the lower-lying (1)n pi* dark state. In contrast, these overtone and combination bands are much weaker for isomer B, implying that the (1)pi pi* state of B is planar and decoupled from the (1)n pi* state. These observations agree with the calculations, which predict the (1)n pi* above the (1)pi pi* state for isomer B but below the (1)pi pi* for both 9H-2AP and isomer A.
Resumo:
Benzodifuran-functionalised pyrene and anthracene fluorophores 1 and 2 were obtained in reasonable yields. Their single crystal structures, electrochemical, optical absorption, and fluorescence characteristics have been described. They show strong luminescence with high quantum yields of 0.53 for 1 and 0.48 for 2. Magnetic measurements for the 2D coordination polymer [Mn(Pht(Pyz(H2O)2]n (1), in which metal centres are linked together by pyrazine (Pyz) and 1,6-bridging o-phthalate ligand (Pht2-), revealed antiferromagnetic interactions between Mn(II) ions.