16 resultados para tropical forests

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rate of destruction of tropical forests continues to accelerate at an alarming rate contributing to an important fraction of overall greenhouse gas emissions. In recent years, much hope has been vested in the emerging REDD+ framework under the UN Framework Convention on Climate Change (UNFCCC), which aims at creating an international incentive system to reduce emissions from deforestation and forest degradation. This paper argues that in the absence of an international consensus on the design of results-based payments, “bottom-up” initiatives should take the lead and explore new avenues. It suggests that a call for tender for REDD+ credits might both assist in leveraging private investments and spending scarce public funds in a cost-efficient manner. The paper discusses the pros and cons of results-based approaches, provides an overview of the goals and principles that govern public procurement and discusses their relevance for the purchase of REDD+ credits, in particular within the ambit of the European Union.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tropical forests are believed to be very harsh environments for human life. It is unclear whether human beings would have ever subsisted in those environments without external resources. It is therefore possible that humans have developed recent biological adaptations in response to specific selective pressures to cope with this challenge. To understand such biological adaptations we analyzed genome-wide SNP data under a Bayesian statistics framework, looking for outlier markers with an overly large extent of differentiation between populations living in a tropical forest, as compared to genetically related populations living outside the forest in Africa and the Americas. The most significant positive selection signals were found in genes related to lipid metabolism, the immune system, body development, and RNA Polymerase III transcription initiation. The results are discussed in the light of putative tropical forest selective pressures, namely food scarcity, high prevalence of pathogens, difficulty to move, and inefficient thermoregulation. Agreement between our results and previous studies on the pygmy phenotype, a putative prototype of forest adaptation, were found, suggesting that a few genetic regions previously described as associated with short stature may be evolving under similar positive selection in Africa and the Americas. In general, convergent evolution was less pervasive than local adaptation in one single continent, suggesting that Africans and Amerindians may have followed different routes to adapt to similar environmental selective pressures.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Drought perturbation driven by the El Niño Southern Oscillation (ENSO) is a principal stochastic variable determining the dynamics of lowland rain forest in S.E. Asia. Mortality, recruitment and stem growth rates at Danum in Sabah (Malaysian Borneo) were recorded in two 4-ha plots (trees ≥ 10 cm gbh) for two periods, 1986–1996 and 1996–2001. Mortality and growth were also recorded in a sample of subplots for small trees (10 to <50 cm gbh) in two sub-periods, 1996–1999 and 1999–2001. Dynamics variables were employed to build indices of drought response for each of the 34 most abundant plot-level species (22 at the subplot level), these being interval-weighted percentage changes between periods and sub-periods. A significant yet complex effect of the strong 1997/1998 drought at the forest community level was shown by randomization procedures followed by multiple hypothesis testing. Despite a general resistance of the forest to drought, large and significant differences in short-term responses were apparent for several species. Using a diagrammatic form of stability analysis, different species showed immediate or lagged effects, high or low degrees of resilience or even oscillatory dynamics. In the context of the local topographic gradient, species’ responses define the newly termed perturbation response niche. The largest responses, particularly for recruitment and growth, were among the small trees, many of which are members of understorey taxa. The results bring with them a novel approach to understanding community dynamics: the kaleidoscopic complexity of idiosyncratic responses to stochastic perturbations suggests that plurality, rather than neutrality, of responses may be essential to understanding these tropical forests. The basis to the various responses lies with the mechanisms of tree-soil water relations which are physiologically predictable: the timing and intensity of the next drought, however, is not. To date, environmental stochasticity has been insufficiently incorporated into models of tropical forest dynamics, a step that might considerably improve the reality of theories about these globally important ecosystems.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Seed production, seed dispersal, and seedling recruitment are integral to forest dynamics, especially in masting species. Often these are studied separately, yet scarcely ever for species with ballistic dispersal even though this mode of dispersal is common in legume trees of tropical African rain forests. Here, we studied two dominant main-canopy tree species, Microberlinia bisulcata and Tetraberlinia bifoliolata (Caesalpinioideae), in 25 ha of primary rain forest at Korup, Cameroon, during two successive masting events (2007/2010). In the vicinity of c. 100 and 130 trees of each species, 476/580 traps caught dispersed seeds and beneath their crowns c. 57,000 pod valves per species were inspected to estimate tree-level fecundity. Seed production of trees increased non-linearly and asymptotically with increasing stem diameters. It was unequal within the two species’ populations, and differed strongly between years to foster both spatial and temporal patchiness in seed rain. The M. bisulcata trees could begin seeding at 42–44 cm diameter: at a much larger size than could T. bifoliolata (25 cm). Nevertheless, per capita life-time reproductive capacity was c. five times greater in M. bisulcata than T. bifoliolata owing to former’s larger adult stature, lower mortality rate (despite a shorter life-time) and smaller seed mass. The two species displayed strong differences in their dispersal capabilities. Inverse modelling (IM) revealed that dispersal of M. bisulcata was best described by a lognormal kernel. Most seeds landed at 10–15 m from stems, with 1% of them going beyond 80 m (<100 m). The direct estimates of fecundity significantly improved the models fitted. The lognormal also described well the seedling recruitment distribution of this species in 121 ground plots. By contrast, the lower intensity of masting and more limited dispersal of the heavier-seeded T. bifoliolata prevented reliable IM. For this species, seed density as function of distance to traps suggested a maximum dispersal distance of 40–50 m, and a correspondingly more aggregated seedling recruitment pattern ensued than for M. bisulcata. From this integrated field study, we conclude that the reproductive traits of M. bisulcata give it a considerable advantage over T. bifoliolata by better dispersing more seeds per capita to reach more suitable establishment sites, and combined with other key traits they explain its local dominance in the forest. Understanding the linkages between size at onset of maturity, individual fecundity, and dispersal capability can better inform the life-history strategies, and hence management, of co-occurring tree species in tropical forests.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Tropical forests are carbon-dense and highly productive ecosystems. Consequently, they play an important role in the global carbon cycle. In the present study we used an individual-based forest model (FORMIND) to analyze the carbon balances of a tropical forest. The main processes of this model are tree growth, mortality, regeneration, and competition. Model parameters were calibrated using forest inventory data from a tropical forest at Mt. Kilimanjaro. The simulation results showed that the model successfully reproduces important characteristics of tropical forests (aboveground biomass, stem size distribution and leaf area index). The estimated aboveground biomass (385 t/ha) is comparable to biomass values in the Amazon and other tropical forests in Africa. The simulated forest reveals a gross primary production of 24 tcha-1yr-1. Modeling above- and belowground carbon stocks, we analyzed the carbon balance of the investigated tropical forest. The simulated carbon balance of this old-growth forest is zero on average. This study provides an example of how forest models can be used in combination with forest inventory data to investigate forest structure and local carbon balances.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Where one or a few tree species reach local high abundance, different ecological factors may variously facilitate or hinder their regeneration. Plant pathogens are thought to be one of those possible agents which drive intraspecific density-dependent mortality of tree seedlings in tropical forests. Experimental evidence for this is scarce, however. In an African rain forest at Korup, we manipulated the density of recently established seedlings (~5–8 wk old; low vs. high-density) of two dominant species of contrasting recruitment potential, and altered their exposure to pathogens using a broad-spectrum fungicide. Seedling mortality of the abundantly recruiting subcanopy tree Oubanguia alata was strongly density-dependent after 7 mo, yet fungicide-treated seedlings had slightly higher mortality than controls. By contrast, seedling mortality of the poorly recruiting large canopy-emergent tree Microberlinia bisulcata was unaffected by density or fungicide. Ectomycorrhizal colonization of M. bisulcata was not affected by density or fungicide either. For O. alata, adverse effects of fungicide on its vesicular arbuscular mycorrhizas may have offset any possible benefit of pathogen removal. We tentatively conclude that fungal pathogens are not a likely major cause of density dependence in O. alata, or of early post-establishment mortality in M. bisulcata. They do not explain the latter's currently very low recruitment rate at Korup.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Incident rainfall is a major source of nutrient input to a forest ecosystem and the consequent throughfall and stemflow contribute to nutrient cycling. These rain-based fluxes were measured over 12 mo in two forest types in Korup National Park, Cameroon, one with low (LEM) and one with high (HEM) ectomycorrhizal abundances of trees. Throughfall was 96.6 and 92.4% of the incident annual rainfall (5370 mm) in LEM and HEM forests respectively; stemflow was correspondingly 1.5 and 2.2%. Architectural analysis showed that ln(funneling ratio) declined linearly with increasing ln(basal area) of trees. Mean annual inputs of N, P, K, Mg and Ca in incident rainfall were 1.50, 1.07, 7.77, 5.25 and 9.27 kg ha(-1), and total rain-based inputs to the forest floor were 5.0, 3.2, 123.4, 14.4 and 37.7 kg ha-1 respectively. The value for K is high for tropical forests and that for N is low. Nitrogen showed a significantly lower loading of throughfall and stemflow in HEM than in LEM forest, this being associated in the HEM forest with a greater abundance of epiphytic bryophytes which may absorb more N. Incident rainfall provided c. 35% of the gross input of P to the forest floor (i. e., rain-based plus small litter inputs), a surprisingly high contribution given the sandy P-poor soils. At the start of the wet season leaching of K from the canopy was particularly high. Calcium in the rain was also highest at this time, most likely due to washing off of dry-deposited Harmattan dusts. It is proposed that throughfall has an important `priming' function in the rapid decomposition of litter and mineralization of P at the start of the wet season. The contribution of P inputted from the atmosphere appears to be significant when compared to the rates of P mineralization from leaf litter.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The growth rate of atmospheric carbondioxide(CO2) concentrations since industrialization is characterized by large interannual variability, mostly resulting from variability in CO 2 uptake by terrestrial ecosystems (typically termed carbon sink). However, the contributions of regional ecosystems to that variability are not well known. Using an ensemble of ecosystem and land-surface models and an empirical observation-based product of global gross primary production, we show that the mean sink, trend, and interannual variability in CO2 uptake by terrestrial ecosystems are dominated by distinct biogeographic regions. Whereas the mean sink is dominated by highly productive lands (mainly tropical forests), the trend and interannual variability of the sink are dominated by semi-arid ecosystems whose carbon balance is strongly associated with circulation-driven variations in both precipitation and temperature.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Janzen–Connell hypothesis proposes that specialized herbivores maintain high numbers of tree species in tropical forests by restricting adult recruitment so that host populations remain at low densities. We tested this prediction for the large timber tree species, Swietenia macrophylla, whose seeds and seedlings are preyed upon by small mammals and a host-specific moth caterpillar Steniscadia poliophaea, respectively. At a primary forest site, experimental seed additions to gaps – canopy-disturbed areas that enhance seedling growth into saplings – over three years revealed lower survival and seedling recruitment closer to conspecific trees and in higher basal area neighborhoods, as well as reduced subsequent seedling survival and height growth. When we included these Janzen–Connell effects in a spatially explicit individual-based population model, the caterpillar's impact was critical to limiting Swietenia's adult tree density, with a > 10-fold reduction estimated at 300 years. Our research demonstrates the crucial but oft-ignored linkage between Janzen–Connell effects on offspring and population-level consequences for a long-lived, potentially dominant tree species.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conspecific effects of neighbours on small-tree survival may have a role in tree population dynamics and community composition of tropical forests. This notion was tested with data from two 4-ha plots in lowland forest at Danum, Sabah (Borneo), for a 21-year interval (censuses at 1986, 1996, 2001, 2007). Species with ≥45 focal trees 10 to <100 cm stem girth per plot in 1986 were selected. Logistic regressions fitted mean focal tree size and mean inverse-distance-weighted basal area abundance of neighbours (within 20 m), for the periods over which each focus tree was alive. Coefficients of variation of neighbourhood basal area abundance, both spatially and temporally, quantified the changing environment of each focus tree. Fits were critically and individually evaluated, with corrections for spatial autocorrelation. Conspecific effects at Danum was generally very weak or non-existent: species’ mortality rates varied also across plots. The main reasons appear to be that (1) species were not dense enough to interact despite frequent although weak spatial aggregation, and their neighbourhoods were highly differing in species composition; and (2) these neighbourhoods were highly variable temporally, meaning that focus trees experienced stochastically fluctuating neighbourhood environments. Only one species, Dimorphocalyx muricatus, showed strong conspecific effects (varying between plots) which can be explained by its distinct ecology. This understorey species is highly aggregated on ridges and is drought-tolerant. That this functionally and habitat-specialized species, has implied intraspecific density-dependent feedback in its dynamics is a remarkable indication of the overall processes maintaining stability of the Danum forest.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Water-bound nitrogen (N) cycling in temperate terrestrial ecosystems of the Northern Hemisphere is today mainly inorganic because of anthropogenic release of reactive N to the environment. In little-industrialized and remote areas, in contrast, a larger part of N cycling occurs as dissolved organic N (DON). In a north Andean tropical montane forest in Ecuador, the N cycle changed markedly during 1998–2010 along with increasing N deposition and reduced soil moisture. The DON concentrations and the fractional contribution of DON to total N significantly decreased in rainfall, throughfall, and soil solutions. This inorganic turn of the N cycle was most pronounced in rainfall and became weaker along the flow path of water through the system until it disappeared in stream water. Decreasing organic contributions to N cycling were caused not only by increasing inorganic N input but also by reduced DON production and/or enhanced DON decomposition. Accelerated DON decomposition might be attributable to less waterlogging and higher nutrient availability. Significantly increasing NO3-N concentrations and NO3-N/NH4-N concentration ratios in throughfall and litter leachate below the thick organic layers indicated increasing nitrification. In mineral soil solutions, in contrast, NH4-N concentrations increased and NO3-N/NH4-N concentration ratios decreased significantly, suggesting increasing net ammonification. Our results demonstrate that the remote tropical montane forests on the rim of the Amazon basin experienced a pronounced change of the N cycle in only one decade. This change likely parallels a similar change which followed industrialization in the temperate zone of the Northern Hemisphere more than a century ago.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Determining the impact of insect herbivores on forest tree seedlings and saplings is difficult without experimentation in the field. Moreover, this impact may be heterogeneous in time and space because of seasonal rainfall and canopy disturbances, or ‘gaps’, which can influence both insect abundance and plant performance. In this study we used fine netting to individually protect seedlings of Microberlinia bisulcata, Tetraberlinia bifoliolata and Tetraberlinia korupensis trees (Fabaceae = Leguminosae) from insects in 41 paired gap-understorey locations across 80 ha of primary rain forest (Korup, Cameroon). For all species, growth in height and leaf numbers was negligible in the understorey, where M. bisulcata had the lowest survival after c. 2 years. In gaps, however, all species responded positively with pronounced above-ground growth across seasons. When exposed to herbivores their seedling height growth was similar, but in the absence of herbivores, M. bisulcata significantly outgrew both Tetraberlinia species and matched their leaf numbers. This result suggests that insect herbivores might play an important role in maintaining species coexistence by mitigating sapling abundance of the more palatable M. bisulcata, which in gaps was eaten the most severely. The higher ratio in static leaf damage of control-to-caged M. bisulcata seedlings in gaps than understorey locations was consistent with the Plant Vigour Hypothesis. This result, however, did not apply to either Tetraberlinia species. For M. bisulcata and T. korupensis, but not T. bifoliolata (the most shade-tolerant species), caging improved relative seedling survival in the understory locations compared to gaps, providing restricted support for the Limiting Resource Model. Approximately 2.25 years after treatments were removed, the caged seedlings were taller and had more leaves than controls in all three species, and the effect remained strongest for M. bisulcata. We conclude that in this community the impact of leaf herbivory on seedling growth in gaps is strong for the dominant M. bisulcata, which coupled to a very low shade-tolerance contributes to limiting its regeneration. However, because gaps are common to most forests, insect herbivores may be having impacts upon functionally similar tree species that are also characterized by low sapling recruitment much more widely than currently appreciated. An implication for the restoration and management of M. bisulcata populations in forests outside of Korup is that physical protection from herbivores of new seedlings where the canopy is opened by gaps, or by harvesting, should substantially increase its subcanopy regeneration, and thus, too, its opportunities for adult recruitment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The first part summarises the origins, definitions and debates around the general notions of development, culture and associated more specific concepts such as identity, tradition, exogenous and endogenous knowledge, institutions, governance or territoriality. A second part highlights how culture and development got related to the debates around sustainable governance of natural resources and forests. The third part illustrates on the basis of a case study from Kenya and Bolivia how culture as a transversal element of forest governance is expressed in empirical terms. Moreover it is shown how the cultural dimension affects positively or negatively the outcomes of culturally shaped forest governance outcomes and the role these effects play in shaping the sustainability of the socio-ecological systems of forests in Africa and South America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In acid tropical forest soils (pH < 5.5) increased mobility of aluminum might limit aboveground productivity. Therefore, we evaluated Al phytotoxicity of three native tree species of tropical montane forests in southern Ecuador. An hydroponic dose-response experiment was conducted. Seedlings of Cedrela odorata L., Heliocarpus americanus L., and Tabebuia chrysantha (Jacq.) G. Nicholson were treated with 0, 300, 600, 1200, and 2400 mu M Al and an organic layer leachate. Dose-response curves were generated for root and shoot morphologic properties to determine effective concentrations (EC). Shoot biomass and healthy leaf area decreased by 44 % to 83 % at 2400 mu M Al, root biomass did not respond (C. odorata), declined by 51 % (H. americanus), or was stimulated at low Al concentrations of 300 mu M (T. chrysantha). EC10 (i.e. reduction by 10 %) values of Al for total biomass were 315 mu M (C. odorata), 219 mu M (H. americanus), and 368 mu M (T. chrysantha). Helicarpus americanus, a fast growing pioneer tree species, was most sensitive to Al toxicity. Negative effects were strongest if plants grew in organic layer leachate, indicating limitation of plant growth by nutrient scarcity rather than Al toxicity. Al toxicity occurred at Al concentrations far above those in native organic layer leachate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aluminum phytotoxicity frequently occurs in acid soils (pH < 5.5) and was therefore discussed to affect ecosystem functioning of tropical montane forests. The susceptibility to Al toxicity depends on the sensitivity of the plant species and the Al speciation in soil solution, which can vary highly depending e.g., on pH, ionic strength, and dissolved organic matter. An acidification of the ecosystem and periodic base metal deposition from Saharan dust may control plant available Al concentrations in the soil solutions of tropical montane rainforests in south Ecuador. The overall objective of my study was to assess a potential Al phytotoxicity in the tropical montane forests in south Ecuador. For this purpose, I exposed three native Al non-accumulating tree species (Cedrela odorata L., Heliocarpus americanus L., and Tabebuia chrysantha (Jacq.) G. Nicholson) to increased Al concentrations (0 – 2400 μM Al) in a hydroponic experiment, I established dose-response curves to estimate the sensitivity of the tree species to increased Al concentrations, and I investigated the mechanisms behind the observed effects induced by elevated Al concentrations. Furthermore, the response of Al concentrations and the speciation in soil solution to Ca amendment in the study area were determined. In a final step, I assessed all major Al fluxes, drivers of Al concentrations in ecosystem solutions, and indicators of Al toxicity in the tropical montane rainforest in Ecuador in order to test for indications of Al toxicity. In the hydroponic experiment, a 10 % reduction in aboveground biomass production occurred at 126 to 376 μM Al (EC10 values), probably attributable to decreased Mg concentrations in leaves and reduced potosynthesis. At 300 μM Al, increased root biomass production of T. chrysantha was observed. Phosphorus concentrations in roots of C. odorata and T. chrysantha were significantly highest in the treatment with 300 μM Al and correlated significantly with root biomass, being a likely reason for stimulated root biomass production. The degree of organic complexation of Al in the organic layer leachate, which is central to plant nutrition because of the high root density, and soil solution from the study area was very high (mean > 99 %). The resulting low free Al concentrations are not likely to affect plant growth, although the concentrations of potentially toxic Al3+ increased with soil depth due to higher total Al and lower dissolved organic matter concentrations in soil solutions. The Ca additions caused an increase of Al in the organic layer leachate, probably because Al3+ was exchanged against the added Ca2+ ions while pH remained constant. The free ion molar ratios of Ca2+:Al3+ (mean ratio ca. 400) were far above the threshold (≤ 1) for Al toxicity, because of a much higher degree of organo-complexation of Al than Ca. High Al fluxes in litterfall (8.8 – 14.2 kg ha−1 yr−1) indicate a high Al circulation through the ecosystem. The Al concentrations in the organic layer leachate were driven by the acidification of the ecosystem and increased significantly between 1999 and 2008. However, the Ca:Al molar ratios in organic layer leachate and all aboveground ecosystem solutions were above the threshold for Al toxicity. Except for two Al accumulating and one non-accumulating tree species, the Ca:Al molar ratios in tree leaves from the study area were above the Al toxicity threshold of 12.5. I conclude that toxic effects in the hydroponic experiment occurred at Al concentrations far above those in native organic layer leachate, shoot biomass production was likely inhibited by reduced Mg uptake, impairing photosynthesis, and the stimulation of root growth at low Al concentrations can be possibly attributed to improved P uptake. Dissolved organic matter in soil solutions detoxifies Al in acidic tropical forest soils and a wide distribution of Al accumulating tree species and high Al fluxes in the ecosystem do not necessarily imply a general Al phytotoxicity.