4 resultados para temporary immersion system
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Recently developed technologies allow aortic valve implantation off-pump in a beating heart. In this procedure, the native, stenotic aortic valve is not removed, but simply crushed by a pressure balloon mounted on a percutaneous catheter. Removal of the native aortic cusps before valve replacement may reduce the incidence of annular or cuspal calcium embolization and late perivalvular leaks and increase implantable valve size. However, a temporary valve system in the ascending aorta may be necessary to maintain hemodynamic stability by reducing acute aortic regurgitation and left ventricular volume overload. This study evaluates the hemodynamic effects of a wire-mounted, monoleaflet, temporary valve apparatus in a mechanical cardiovascular simulator. Aortic flow, systemic pressure and left ventricular pressure were continuously monitored. An intraluminal camera obtained real-time proximal and distal images of the valve in operation. Insertion of the parachute valve in the simulator increased diastolic pressure from 7 to 38 mm Hg. Cardiac output increased from 2.08 to 4.66 L/min and regurgitant volume decreased from 65 to 23 mL. In conclusion, placement of a temporary valve in the ascending aorta may help maintain hemodynamic stability and improve off-pump aortic valve replacement.
Resumo:
BACKGROUND: Decompressive laparotomy followed by temporary abdominal closure (TAC) is an established prophylaxis and treatment for abdominal compartment syndrome. The herein presented study aimed at the comparison of volume reserve capacity and development of intra-abdominal hypertension after forced primary abdominal closure and different TAC techniques in a porcine model. METHODS: Eight anesthesized and mechanically ventilated domestic pigs underwent a standardized midline laparotomy. A bag was placed into the abdominal cavity. Before abdominal closure, the bag was prefilled with 3,000 mL water to simulate increased intra-abdominal volume. The intra-abdominal pressure (IAP) was then increased in 2 mm Hg steps up to 30 mm Hg by adding volume (volume reserve capacity) to the intra-abdominal bag. Volume reserve capacity with the corresponding IAP were analyzed and compared for primary abdominal closure, bag silo closure, a zipper system, and vacuum-assisted closure (VAC) with different negative pressures (-50, -100, and -150 mm Hg). Hemodynamic and pulmonary parameters were monitored throughout the experiment. RESULTS: Volume reserve capacity was the highest for bag silo closure followed by the zipper system and VAC with primary abdominal closure providing the least volume reserve capacity in the whole IAP range. Of interest, VAC -50 mm Hg resulted in a lower volume reserve capacity when compared with VAC -100 and -150 mm Hg. Pulmonary and hemodynamic parameters demonstrated no significant differences between primary abdominal closure and the evaluated TAC techniques at all IAP levels. CONCLUSIONS: The present experimental in vivo study indicates that bag silo closure and zipper systems may be favorable TAC techniques after decompressive laparotomy. In contrast, the VAC techniques resulted in lower volume reserve capacity and therefore may bear an increased risk for recurrent intra-abdominal hypertension in the initial phase after decompressive laparotomy.
Resumo:
Aeromonas salmonicida subsp. salmonicida is an important pathogen in salmonid aquaculture and is responsible for the typical furunculosis. The type-three secretion system (T3SS) is a major virulence system. In this work, we review structure and function of this highly sophisticated nanosyringe in A. salmonicida. Based on the literature as well as personal experimental observations, we document the genetic (re)organization, expression regulation, anatomy, putative functional origin and roles in the infectious process of this T3SS. We propose a model of pathogenesis where A. salmonicida induces a temporary immunosuppression state in fish in order to acquire free access to host tissues. Finally, we highlight putative important therapeutic and vaccine strategies to prevent furunculosis of salmonid fish.
Resumo:
Meniscal injuries can occur secondary to trauma or be instigated by the changes in knee-joint function that are associated with aging, osteo- and rheumatoid arthritis, disturbances in gait and obesity. Sixty per cent of persons over 50 years of age manifest signs of meniscal pathology. The surgical and arthroscopic measures that are currently implemented to treat meniscal deficiencies bring only transient relief from pain and effect but a temporary improvement in joint function. Although tissue-engineering-based approaches to meniscal repair are now being pursued, an appropriate in-vitro model has not been conceived. The aim of this study was to develop an organ-slice culturing system to simulate the repair of human meniscal lesions in vitro. The model consists of a ring of bovine meniscus enclosing a chamber that represents the defect and reproduces its sequestered physiological microenvironment. The defect, which is closed with a porous membrane, is filled with fragments of synovial tissue, as a source of meniscoprogenitor cells, and a fibrin-embedded, calcium-phosphate-entrapped depot of the meniscogenic agents BMP-2 and TGF-ß1. After culturing for 2 to 6 weeks, the constructs were evaluated histochemically and histomorphometrically, as well as immunohistochemically for the apoptotic marker caspase 3 and collagen types I and II. Under the defined conditions, the fragments of synovium underwent differentiation into meniscal tissue, which bonded with the parent meniscal wall. Both the parent and the neoformed meniscal tissue survived the duration of the culturing period without significant cell losses. The concept on which the in-vitro system is based was thus validated. This article is protected by copyright. All rights reserved.