54 resultados para synthetic organic chemistry
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
We present the novel synthesis of two sugar units that are central intermediates for the formation of members of the bicyclo-DNA and -RNA family. The synthesis starts from commercially available 1,2: 5,6-di-O-isopropylidene-alpha-D-glucofuranose. The key step involves the elaboration of a carbocyclic ring in a furanoside by rhodium(I)-catalyzed hydroacylation. Via this pathway, one of the sugar units is available in 8 steps and in an overall yield of 27%, while its deoxy derivative is obtained in 11 steps, which is 5 steps fewer than in our previous synthesis of this compound.
Resumo:
A large scale, 10 step synthesis of cyclopentanone 1 , starting from the chiral pool compound D-mannose, is described. The synthesis proceeds via a ring closing metathesis reaction as the key step in an overall yield of 23%. Cyclopentanone 1 is a central intermediate for the synthesis of tricyclo-DNA
Resumo:
We describe the synthesis and incorporation into alpha-DNA of a novel conformationally constrained alpha-nucleoside analogue. The carbohydrate part of this analogue was prepared in 4 steps from the known bicyclic precursor 1 via a stereospecific, intramolecular, Et 3B mediated radical addition to a keto-function as the key step. The thus obtained intermediate 4 was transformed stereoselectively into the corresponding alpha-nucleoside analogues 7 and 8 containing the bases adenine and thymine, and were further elaborated into the phosphoramidite building blocks 11 and 12 . Both building blocks were incorporated into alpha-oligodeoxynucleotides and their pairing behavior to parallel complementary DNA studied by UV-melting experiments. Single substitutions of alpha-deoxyribnucleoside units by the new analogues in the center of duplexes were found to be thermally destabilizing by only -0.8 to -3.1›C.
Resumo:
Supramolecular DNA assembly blends DNA building blocks with synthetic organic and inorganic molecules giving structural and functional advantages both to the initial self-assembly process and to the final construct. Synthetic molecules can bring a number of additional interactions into DNA nanotechnology. Incorporating extended aromatic molecules as connectors of DNA strands allows folding of these strands through π-π stacking (DNA “foldamers”). In previous work it was shown that short oligopyrenotides (phosphodiester-linked pyrene oligomers) behave as staircase-like foldamers, which cooperatively self-assemble into two-dimensional supramolecular polymers in aqueous medium. Herein, we demonstrate that a 10-mer DNA-sequence modified with 7 pyrene units (see illustration) forms dimensionally-defined supramolecular polymers under thermodynamic conditions in water. We present the self-assembly behavior, morphological studies, and the spectroscopic properties of the investigated DNA-sequences (illustrative AFM picture shown below).
Resumo:
Supramolecular DNA assembly blends DNA building blocks with synthetic organic molecules giving structural and functional advantages. Incorporating extended aromatic molecules as connectors of DNA strands allows folding of these strands through π-π stacking (DNA 'foldamers'). In previous work it was shown that short oligopyrenotides behave as staircase-like foldamers, which cooperatively self-assemble into 2D supramolecular polymers in aqueous medium. Herein, we demonstrate that 10-mer DNA-sequence conjugated with seven pyrene unites forms dimensionally-defined supramolecular polymers under thermodynamic conditions in water. We present the self-assembly behavior, morphologycal studies (AFM and TEM), and the spectroscopic properties (UV/vis, CD) of the investigated pyrene - conjugated DNA-sequence.
Resumo:
An improved and efficient synthetic route to four functionalized bis(ethylenedithio)-tetrathiafulvalene (BEDT-TTF) derivatives 2−5 is reported. Tetrathiolate 1 was readily prepared from 2,2‘-bis(1,3,4,6-tetrathiapentalen-5-one) under carefully controlled conditions. Subsequent reaction of 1 with selected primary alkyl halides affords new functionalized BEDT-TTF derivatives in good yields.
Resumo:
We recently reported on the synthesis and pairing properties of the DNA analogue bicyclo[3.2.1]amide DNA (bca-DNA). In this analogue the nucleobases are attached via a linear, 4-bond amide-linker to a structurally preorganized sugar-phosphate backbone unit. To define the importance of the degree of structural rigidity of the bca-backbone unit on the pairing properties, we designed the structurally simpler cyclopentane amide DNA (cpa-DNA), in which the bicyclo[3.2.1]-scaffold was reduced to a cyclopentane unit while the base-linker was left unchanged. Here we present a synthetic route to the enantiomerically pure cpa-DNA monomers and the corresponding phosphoramidites containing the bases A and T, starting from a known, achiral precursor in 9 and 12 steps, respectively. Fully modified oligodeoxynucleotides were synthesized by standard solid-phase oligonucleotide chemistry, and their base-pairing properties with complementary oligonucleotides of the DNA-, RNA-, bca-DNA-, and cpa-DNA-backbones were assessed by UV melting curves and CD-spectroscopic methods. We found that cpa-oligoadenylates form duplexes with complementary DNA that are less stable by -2.7 degrees C/mod. compared to DNA. The corresponding cpa-oligothymidylates do not participate in complementary base-pairing with any of the investigated backbone systems except with its own (homo-duplex). As its congener bca-DNA, cpa-DNA seems to prefer left-handed helical duplex structures with DNA or with itself as indicated by the CD spectra
Resumo:
Most of the phyllosilicates detected at the surface of Mars today are probably remnants of ancient environments that sustained long-term bodies of liquid water at the surface or subsurface and were possibly favorable for the emergence of life. Consequently, phyllosilicates have become the main mineral target in the search for organics on Mars. But are phyllosilicates efficient at preserving organic molecules under current environmental conditions at the surface of Mars? We monitored the qualitative and quantitative evolutions of glycine, urea, and adenine in interaction with the Fe3+-smectite clay nontronite, one of the most abundant phyllosilicates present at the surface of Mars, under simulated martian surface ultraviolet light (190-400 nm), mean temperature (218 +/- 2 K), and pressure (6 +/- 1 mbar) in a laboratory simulation setup. We tested organic-rich samples that were representative of the evaporation of a small, warm pond of liquid water containing a high concentration of organics. For each molecule, we observed how the nontronite influences its quantum efficiency of photodecomposition and the nature of its solid evolution products. The results reveal a pronounced photoprotective effect of nontronite on the evolution of glycine and adenine; their efficiencies of photodecomposition were reduced by a factor of 5 when mixed at a concentration of 2.6x10(-2) mol of molecules per gram of nontronite. Moreover, when the amount of nontronite in the sample of glycine was increased by a factor of 2, the gain of photoprotection was multiplied by a factor of 5. This indicates that the photoprotection provided by the nontronite is not a purely mechanical shielding effect but is also due to stabilizing interactions. No new evolution product was firmly identified, but the results obtained with urea suggest a particular reactivity in the presence of nontronite, leading to an increase of its dissociation rate. Key Words: Martian surface-Organic chemistry-Photochemistry-Astrochemistry-Nontronite-Phyllosilicates. Astrobiology 15, 221-237.
Resumo:
Because of the poor solubility of the commercially available bisacylphosphine oxides in dental acidic aqueous primer formulations, bis(3-{[2-(allyloxy)ethoxy]methyl}-2,4,6-trimethylbenzoyl)(phenyl)phosphine oxide (WBAPO) was synthesized starting from 3-(chloromethyl)-2,4,6-trimethylbenzoic acid by the dichlorophosphine route. The substituent was introduced by etherification with 2-(allyloxy)ethanol. In the second step, 3-{[2-(allyloxy)ethoxy]methyl}-2,4,6-trimethylbenzoic acid was chlorinated. The formed acid chloride showed an unexpected low thermal stability. Its thermal rearrangement at 180 ° C resulted in a fast formation of 3-(chloromethyl)-2,4,6-trimethylbenzoic acid 2-(allyloxy)ethyl ester. In the third step, the acid chloride was reacted with phenylphosphine dilithium with the formation of bis(3-{[2-(allyloxy)ethoxy]methyl}-2,4,6-trimethylbenzoyl)(phenyl)phosphine, which was oxidized to WBAPO. The structure of WBAPO was confirmed by ¹H NMR, ¹³C NMR, ³¹P NMR, and IR spectroscopy, as well as elemental analysis. WBAPO, a yellow liquid, possesses improved solubility in polar solvents and shows UV-vis absorption, and a high photoreactivity comparable with the commercially available bisacylphosphine oxides. A sufficient storage stability was found in dental acidic aqueous primer formulations.