6 resultados para swd: Multimodal System

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

40.00% 40.00%

Publicador:

Resumo:

An algorithm for the real-time registration of a retinal video sequence captured with a scanning digital ophthalmoscope (SDO) to a retinal composite image is presented. This method is designed for a computer-assisted retinal laser photocoagulation system to compensate for retinal motion and hence enhance the accuracy, speed, and patient safety of retinal laser treatments. The procedure combines intensity and feature-based registration techniques. For the registration of an individual frame, the translational frame-to-frame motion between preceding and current frame is detected by normalized cross correlation. Next, vessel points on the current video frame are identified and an initial transformation estimate is constructed from the calculated translation vector and the quadratic registration matrix of the previous frame. The vessel points are then iteratively matched to the segmented vessel centerline of the composite image to refine the initial transformation and register the video frame to the composite image. Criteria for image quality and algorithm convergence are introduced, which assess the exclusion of single frames from the registration process and enable a loss of tracking signal if necessary. The algorithm was successfully applied to ten different video sequences recorded from patients. It revealed an average accuracy of 2.47 ± 2.0 pixels (∼23.2 ± 18.8 μm) for 2764 evaluated video frames and demonstrated that it meets the clinical requirements.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Image-guided, computer-assisted neurosurgery has emerged to improve localization and targeting, to provide a better anatomic definition of the surgical field, and to decrease invasiveness. Usually, in image-guided surgery, a computer displays the surgical field in a CT/MR environment, using axial, coronal or sagittal views, or even a 3D representation of the patient. Such a system forces the surgeon to look away from the surgical scene to the computer screen. Moreover, this kind of information, being pre-operative imaging, can not be modified during the operation, so it remains valid for guidance in the first stage of the surgical procedure, and mainly for rigid structures like bones. In order to solve the two constraints mentioned before, we are developing an ultrasoundguided surgical microscope. Such a system takes the advantage that surgical microscopy and ultrasound systems are already used in neurosurgery, so it does not add more complexity to the surgical procedure. We have integrated an optical tracking device in the microscope and an augmented reality overlay system with which we avoid the need to look away from the scene, providing correctly aligned surgical images with sub-millimeter accuracy. In addition to the standard CT and 3D views, we are able to track an ultrasound probe, and using a previous calibration and registration of the imaging, the image obtained is correctly projected to the overlay system, so the surgeon can always localize the target and verify the effects of the intervention. Several tests of the system have been already performed to evaluate the accuracy, and clinical experiments are currently in progress in order to validate the clinical usefulness of the system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PET/CT guidance for percutaneous interventions allows biopsy of suspicious metabolically active bone lesions even when no morphological correlation is delineable in the CT images. Clinical use of PET/CT guidance with conventional step-by-step technique is time consuming and complicated especially in cases in which the target lesion is not shown in the CT image. Our recently developed multimodal instrument guidance system (IGS) for PET/CT improved this situation. Nevertheless, bone biopsies even with IGS have a trade-off between precision and intervention duration which is proportional to patient and personnel exposure to radiation. As image acquisition and reconstruction of PET may take up to 10 minutes, preferably only one time consuming combined PET/CT acquisition should be needed during an intervention. In case of required additional control images in order to check for possible patient movements/deformations, or to verify the final needle position in the target, only fast CT acquisitions should be performed. However, for precise instrument guidance accounting for patient movement and/or deformation without having a control PET image, it is essential to be able to transfer the position of the target as identified in the original PET/CT to a changed situation as shown in the control CT.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CONCLUSION: Our self-developed planning and navigation system has proven its capacity for accurate surgery on the anterior and lateral skull base. With the incorporation of augmented reality, image-guided surgery will evolve into 'information-guided surgery'. OBJECTIVE: Microscopic or endoscopic skull base surgery is technically demanding and its outcome has a great impact on a patient's quality of life. The goal of the project was aimed at developing and evaluating enabling navigation surgery tools for simulation, planning, training, education, and performance. This clinically applied technological research was complemented by a series of patients (n=406) who were treated by anterior and lateral skull base procedures between 1997 and 2006. MATERIALS AND METHODS: Optical tracking technology was used for positional sensing of instruments. A newly designed dynamic reference base with specific registration techniques using fine needle pointer or ultrasound enables the surgeon to work with a target error of < 1 mm. An automatic registration assessment method, which provides the user with a color-coded fused representation of CT and MR images, indicates to the surgeon the location and extent of registration (in)accuracy. Integration of a small tracker camera mounted directly on the microscope permits an advantageous ergonomic way of working in the operating room. Additionally, guidance information (augmented reality) from multimodal datasets (CT, MRI, angiography) can be overlaid directly onto the surgical microscope view. The virtual simulator as a training tool in endonasal and otological skull base surgery provides an understanding of the anatomy as well as preoperative practice using real patient data. RESULTS: Using our navigation system, no major complications occurred in spite of the fact that the series included difficult skull base procedures. An improved quality in the surgical outcome was identified compared with our control group without navigation and compared with the literature. The surgical time consumption was reduced and more minimally invasive approaches were possible. According to the participants' questionnaires, the educational effect of the virtual simulator in our residency program received a high ranking.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Digital imaging methods are a centrepiece for diagnosis and management of macular disease. A recently developed imaging device is composed of simultaneous confocal scanning laser ophthalmoscopy (SLO) and optical coherence tomography (OCT). By means of clinical samples the benefit of this technique concerning diagnostic and therapeutic follow-up will be assessed. METHODS: The combined OCT-SLO-System (Ophthalmic Technologies Inc., Toronto, Canada) allows for confocal en-face fundus imaging and high resolution OCT scanning at the same time. OCT images are obtained from transversal line scans. One light source and the identical scanning rate yield a pixel-to-pixel correspondence of images. Three-dimensional thickness maps are derived from C-scan stacking. RESULTS: We followed-up patients with cystoid macular edema, pigment epithelium detachment, macular hole, venous branch occlusion, and vitreoretinal tractions during their course of therapy. The new imaging method illustrates the reduction of cystoid volume, e.g. after intravitreal injections of either angiostatic drugs or steroids. C-scans are used for appreciation of lesion diameters, visualisation of pathologies involving the vitreoretinal interface, and quantification of retinal thickness change. CONCLUSION: The combined OCT-SLO system creates both topographic and tomographic images of the retina. New therapeutic options can be followed-up closely by observing changes in lesion thickness and cyst volumes. For clinical use further studies are needed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we report the set-up and results of the Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) organized in conjunction with the MICCAI 2012 and 2013 conferences. Twenty state-of-the-art tumor segmentation algorithms were applied to a set of 65 multi-contrast MR scans of low- and high-grade glioma patients - manually annotated by up to four raters - and to 65 comparable scans generated using tumor image simulation software. Quantitative evaluations revealed considerable disagreement between the human raters in segmenting various tumor sub-regions (Dice scores in the range 74-85%), illustrating the difficulty of this task. We found that different algorithms worked best for different sub-regions (reaching performance comparable to human inter-rater variability), but that no single algorithm ranked in the top for all subregions simultaneously. Fusing several good algorithms using a hierarchical majority vote yielded segmentations that consistently ranked above all individual algorithms, indicating remaining opportunities for further methodological improvements. The BRATS image data and manual annotations continue to be publicly available through an online evaluation system as an ongoing benchmarking resource.