43 resultados para sustainable transport role
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The present paper discusses a conceptual, methodological and practical framework within which the limitations of the conventional notion of natural resource management (NRM) can be overcome. NRM is understood as the application of scientific ecological knowledge to resource management. By including a consideration of the normative imperatives that arise from scientific ecological knowledge and submitting them to public scrutiny, ‘sustainable management of natural resources’ can be recontextualised as ‘sustainable governance of natural resources’. This in turn makes it possible to place the politically neutralising discourse of ‘management’ in a space for wider societal debate, in which the different actors involved can deliberate and negotiate the norms, rules and power relations related to natural resource use and sustainable development. The transformation of sustainable management into sustainable governance of natural resources can be conceptualised as a social learning process involving scientists, experts, politicians and local actors, and their corresponding scientific and non-scientific knowledges. The social learning process is the result of what Habermas has described as ‘communicative action’, in contrast to ‘strategic action’. Sustainable governance of natural resources thus requires a new space for communicative action aiming at shared, intersubjectively validated definitions of actual situations and the goals and means required for transforming current norms, rules and power relations in order to achieve sustainable development. Case studies from rural India, Bolivia and Mali explore the potentials and limitations for broadening communicative action through an intensification of social learning processes at the interface of local and external knowledge. Key factors that enable or hinder the transformation of sustainable management into sustainable governance of natural resources through social learning processes and communicative action are discussed.
Resumo:
We compare modeled oceanic carbon uptake in response to pulse CO2 emissions using a suite of global ocean models and Earth system models. In response to a CO2 pulse emission of 590 Pg C (corresponding to an instantaneous doubling of atmospheric CO2 from 278 to 556 ppm), the fraction of CO2 emitted that is absorbed by the ocean is: 37±8%, 56±10%, and 81±4% (model mean ±2σ ) in year 30, 100, and 1000 after the emission pulse, respectively. Modeled oceanic uptake of pulse CO2 on timescales from decades to about a century is strongly correlated with simulated present-day uptake of chlorofluorocarbons (CFCs) and CO2 across all models, while the amount of pulse CO2 absorbed by the ocean from a century to a millennium is strongly correlated with modeled radiocarbon in the deep Southern and Pacific Ocean. However, restricting the analysis to models that are capable of reproducing observations within uncertainty, the correlation is generally much weaker. The rates of surface-to-deep ocean transport are determined for individual models from the instantaneous doubling CO2 simulations, and they are used to calculate oceanic CO2 uptake in response to pulse CO2 emissions of different sizes pulses of 1000 and 5000 Pg C. These results are compared with simulated oceanic uptake of CO2 by a number of models simulations with the coupling of climate-ocean carbon cycle and without it. This comparison demonstrates that the impact of different ocean transport rates across models on oceanic uptake of anthropogenic CO2 is of similar magnitude as that of climate-carbon cycle feedbacks in a single model, emphasizing the important role of ocean transport in the uptake of anthropogenic CO2.
Resumo:
Mountain socio-ecological systems produce valuable but complex ecosystem services resulting from biomes stratified by altitude and gravity. These systems are often managed and shaped by smallholders whose marginalization is exacerbated by uncertainties and a lack of policy attention. Human–environment interfaces in mountains hence require holistic policies. We analyse the potential of the Global Mountain Green Economy Agenda (GMGEA) in building awareness and thus prompting cross-sectoral policy strategies for sustainable mountain development. Considering the critique of the green economy presented at the Rio + 20 conference, we argue that the GMGEA can nevertheless structure knowledge and inform regional institutions about the complexity of mountain socio-ecological systems, a necessary pre-condition to prompt inter-agency collaboration and cross-sectoral policy formulation. After reviewing the content of the GMGEA, we draw on two empirical cases in the Pakistani and Nepali Himalayas. First, we show that lack of awareness has led to a sequence of fragmented interventions with unanticipated, and unwanted, consequences for communities. Second, using a green economy lens, we show how fragmentation could have been avoided and cross-sectoral policies yielded more beneficial results. Project fragmentation reflects disconnected or layered policies by government agencies, which inherently keep specialized agendas and have no incentive to collaborate. Awareness makes agencies more likely to collaborate and adopt cross-sectoral approaches, allowing them to target more beneficiaries, be more visible, and raise more funds. Nevertheless, we also identify four factors that may currently still limit the effect of the GMGEA: high costs of inter-agency collaboration, lack of legitimacy of the green economy, insufficiently-secured smallholder participation, and limited understanding of the mechanisms through which global agendas influence local policy.
Resumo:
There is a general consensus that healthy soils are pivotal for food security. Food production is one of the main ecosystem services provided by and thus dependent on well-functioning soils. There are also intrinsic connections between the four pillars of food security: food availability, access, utilization, and stability; with how soils are managed, accessed and secured, in particular by food insecure and vulnerable populations. On the other hand, socio-political and economic processes that precipitate inequalities and heighten vulnerabilities among poor populations often increase pressure on soils due to unsustainable forms of land use and poor agricultural practises. This has often led to scenarios that can be described as: ‘poor soils, empty stomachs (hungry people) and poor livelihoods.' In 2015, in particular, as we head towards approval of the ‘Sustainable Development Goals' (SDGs), the role of Financing for Development is debated and agreed upon and a new climate pact is signed – these three political dimensions define how a new post-2015 agenda needs to be people-smart as well as resource-smart. For proposed SDG 2 (Food Security and Hunger), there can be so resolution without addressing people, policies and institutions.
Resumo:
Nephrogenic dopamine is a potent natriuretic paracrine/autocrine hormone that is central for mammalian sodium homeostasis. In the renal proximal tubule, dopamine induces natriuresis partly via inhibition of the sodium/proton exchanger NHE3. The signal transduction pathways and mechanisms by which dopamine inhibits NHE3 are complex and incompletely understood. This manuscript describes the role of the serine/threonine protein phosphatase 2A (PP2A) in the regulation of NHE3 by dopamine. The PP2A regulatory subunit B56 delta (coded by the Ppp2r5d gene) directly associates with more than one region of the carboxy-terminal hydrophilic putative cytoplasmic domain of NHE3 (NHE3-cyto), as demonstrated by yeast-two-hybrid, co-immunoprecipitation, blot overlay and in vitro pull-down assays. Phosphorylated NHE3-cyto is a substrate for purified PP2A in an in vitro dephosphorylation reaction. In cultured renal cells, inhibition of PP2A by either okadaic acid or by overexpression of the simian virus 40 (SV40) small t antigen blocks the ability of dopamine to inhibit NHE3 activity and to reduce surface NHE3 protein. Dopamine-induced NHE3 redistribution is also blocked by okadaic acid ex vivo in rat kidney cortical slices. These studies demonstrate that PP2A is an integral and critical participant in the signal transduction pathway between dopamine receptor activation and NHE3 inhibition. Key words: Natriuresis, Sodium transport, Signal transduction.
Resumo:
Vitamin C (ascorbic acid) is required for the synthesis of collagen, carnitine, catecholamine and the neurotransmitter norepinephrine. Vitamin C also plays an important role in protection against oxidative stress. Transporters for vitamin C and its oxidized form dehydroascorbate (DHA) are crucial to keep vitamin concentrations optimal in the body. The human SLC23 family consists of the Na(+)-dependent vitamin C transporters SVCT1 (SLC23A1) and SVCT2 (SLC23A2) and the orphan transporter SVCT3 (SLC23A3). Phylogenetically, the SLC23 family belongs to the nucleobase-ascorbate transporter family although no specificity for nucleobases has yet been demonstrated for the human members of this family. In fact, the SVCT1 and SVCT2 transporters are rather specific for ascorbic acid. SVCT1 is expressed in epithelial tissues such as intestine, where it contributes to the maintenance of whole-body ascorbic acid levels, whereas the expression of SVCT2 is relatively widespread either to protect metabolically active cells and specialized tissues from oxidative stress or to deliver ascorbic acid to tissues that are in high demand of the vitamin for enzymatic reactions. DHA, the oxidized form of ascorbic acid is taken up and distributed in the body by facilitated transport via members of the SLC2/GLUT family (GLUT1, GLUT3, and GLUT4). Although, the main focus of this review is on the SLC23 family of ascorbic acid transporters, transporters of DHA and nucleobases are also briefly discussed for completeness.
Resumo:
Endocrine and neuroendocrine cells differ from cells which rapidly release all their secreted proteins in that they store some secretory proteins in concentrated forms in secretory granules to be rapidly released when cells are stimulated. Protein aggregation is considered as the first step in the secretory granule biosynthesis and, at least in the case of prolactin and growth hormone, greatly depends on zinc ions that facilitate this process. Hence, regulation of cellular zinc transport especially that within the regulated secretory pathway is of importance to understand. Various zinc transporters of Slc30a/ZnT and Slc39a/Zip families have been reported to fulfil this role and to participate in fine tuning of zinc transport in and out of the endoplasmic reticulum, Golgi complex and secretory granules, the main cellular compartments of the regulated secretory pathway. In this review, we will focus on the role of zinc in the formation of hormone-containing secretory granules with special emphasis on conditions required for growth hormone dimerization/aggregation. In addition, we highlight the role of zinc transporters that govern the process of zinc homeostasis in the regulated hormone secretion.