3 resultados para solution accuracy
em BORIS: Bern Open Repository and Information System - Berna - Suiça
High accuracy alignment facility for the receiver and transmitter of the BepiColombo Laser Altimeter
Resumo:
The accurate co-alignment of the transmitter to the receiver of the BepiColombo Laser Altimeter is a challenging task for which an original alignment concept had to be developed. We present here the design, construction and testing of a large collimator facility built to fulfill the tight alignment requirements. We describe in detail the solution found to attenuate the high energy of the instrument laser transmitter by an original beam splitting pentaprism group. We list the different steps of the calibration of the alignment facility and estimate the errors made at each of these steps. We finally prove that the current facility is ready for the alignment of the flight instrument. Its angular accuracy is 23 μrad.
Resumo:
OBJECTIVES: The STAndards for Reporting studies of Diagnostic accuracy (STARD) for investigators and editors and the Quality Assessment of Diagnostic Accuracy Studies (QUADAS) for reviewers and readers offer guidelines for the quality and reporting of test accuracy studies. These guidelines address and propose some solutions to two major threats to validity: spectrum bias and test review bias. STUDY DESIGN AND SETTING: Using a clinical example, we demonstrate that these solutions fail and propose an alternative solution that concomitantly addresses both sources of bias. We also derive formulas that prove the generality of our arguments. RESULTS: A logical extension of our ideas is to extend STARD item 23 by adding a requirement for multivariable statistical adjustment using information collected in QUADAS items 1, 2, and 12 and STARD items 3-5, 11, 15, and 18. CONCLUSION: We recommend reporting not only variation of diagnostic accuracy across subgroups (STARD item 23) but also the effects of the multivariable adjustments on test performance. We also suggest that the QUADAS be supplemented by an item addressing the appropriateness of statistical methods, in particular whether multivariable adjustments have been included in the analysis.
Resumo:
AIM Depending on intensity, exercise may induce a strong hormonal and metabolic response, including acid-base imbalances and changes in microcirculation, potentially interfering with the accuracy of continuous glucose monitoring (CGM). The present study aimed at comparing the accuracy of the Dexcom G4 Platinum (DG4P) CGM during continuous moderate and intermittent high-intensity exercise (IHE) in adults with type 1 diabetes (T1DM). METHODS Ten male individuals with well-controlled T1DM (HbA1c 7.0±0.6% [54±6mmol/mol]) inserted the DG4P sensor 2 days prior to a 90min cycling session (50% VO2peak) either with (IHE) or without (CONT) a 10s all-out sprint every 10min. Venous blood samples for reference glucose measurement were drawn every 10min and euglycemia (target 7mmol/l) was maintained using an oral glucose solution. Additionally, lactate and venous blood gas variables were determined. RESULTS Mean reference blood glucose was 7.6±0.2mmol/l during IHE and 6.7±0.2mmol/l during CONT (p<0.001). IHE resulted in significantly higher levels of lactate (7.3±0.5mmol/l vs. 2.6±0.3mmol/l, p<0.001), while pH values were significantly lower in the IHE group (7.27 vs. 7.38, p=0.001). Mean absolute relative difference (MARD) was 13.3±2.2% for IHE and 13.6±2.8% for CONT suggesting comparable accuracy (p=0.90). Using Clarke Error Grid Analysis, 100% of CGM values during both IHE and CONT were in zones A and B (IHE: 77% and 23%; CONT: 78% and 22%). CONCLUSIONS The present study revealed good and comparable accuracy of the DG4P CGM system during intermittent high intensity and continuous moderate intensity exercise, despite marked differences in metabolic conditions. This corroborates the clinical robustness of CGM under differing exercise conditions. CLINICAL TRIAL REGISTRATION NUMBER ClinicalTrials.gov NCT02068638.