10 resultados para software validation

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Today, there is little knowledge on the attitude state of decommissioned intact objects in Earth orbit. Observational means have advanced in the past years, but are still limited with respect to an accurate estimate of motion vector orientations and magnitude. Especially for the preparation of Active Debris Removal (ADR) missions as planned by ESA’s Clean Space initiative or contingency scenarios for ESA spacecraft like ENVISAT, such knowledge is needed. ESA's “Debris Attitude Motion Measurements and Modelling” project (ESA Contract No. 40000112447), led by the Astronomical Institute of the University of Bern (AIUB), addresses this problem. The goal of the project is to achieve a good understanding of the attitude evolution and the considerable internal and external effects which occur. To characterize the attitude state of selected targets in LEO and GTO, multiple observation methods are combined. Optical observations are carried out by AIUB, Satellite Laser Ranging (SLR) is performed by the Space Research Institute of the Austrian Academy of Sciences (IWF) and radar measurements and signal level determination are provided by the Fraunhofer Institute for High Frequency Physics and Radar Techniques (FHR). The In-Orbit Tumbling Analysis tool (ιOTA) is a prototype software, currently in development by Hyperschall Technologie Göttingen GmbH (HTG) within the framework of the project. ιOTA will be a highly modular software tool to perform short-(days), medium-(months) and long-term (years) propagation of the orbit and attitude motion (six degrees-of-freedom) of spacecraft in Earth orbit. The simulation takes into account all relevant acting forces and torques, including aerodynamic drag, solar radiation pressure, gravitational influences of Earth, Sun and Moon, eddy current damping, impulse and momentum transfer from space debris or micro meteoroid impact, as well as the optional definition of particular spacecraft specific influences like tank sloshing, reaction wheel behaviour, magnetic torquer activity and thruster firing. The purpose of ιOTA is to provide high accuracy short-term simulations to support observers and potential ADR missions, as well as medium-and long-term simulations to study the significance of the particular internal and external influences on the attitude, especially damping factors and momentum transfer. The simulation will also enable the investigation of the altitude dependency of the particular external influences. ιOTA's post-processing modules will generate synthetic measurements for observers and for software validation. The validation of the software will be done by cross-calibration with observations and measurements acquired by the project partners.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

OBJECTIVES: To determine the accuracy of automated vessel-segmentation software for vessel-diameter measurements based on three-dimensional contrast-enhanced magnetic resonance angiography (3D-MRA). METHOD: In 10 patients with high-grade carotid stenosis, automated measurements of both carotid arteries were obtained with 3D-MRA by two independent investigators and compared with manual measurements obtained by digital subtraction angiography (DSA) and 2D maximum-intensity projection (2D-MIP) based on MRA and duplex ultrasonography (US). In 42 patients undergoing carotid endarterectomy (CEA), intraoperative measurements (IOP) were compared with postoperative 3D-MRA and US. RESULTS: Mean interoperator variability was 8% for measurements by DSA and 11% by 2D-MIP, but there was no interoperator variability with the automated 3D-MRA analysis. Good correlations were found between DSA (standard of reference), manual 2D-MIP (rP=0.6) and automated 3D-MRA (rP=0.8). Excellent correlations were found between IOP, 3D-MRA (rP=0.93) and US (rP=0.83). CONCLUSION: Automated 3D-MRA-based vessel segmentation and quantification result in accurate measurements of extracerebral-vessel dimensions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Peritoneal transport characteristics and residual renal function require regular control and subsequent adjustment of the peritoneal dialysis (PD) prescription. Prescription models shall facilitate the prediction of the outcome of such adaptations for a given patient. In the present study, the prescription model implemented in the PatientOnLine software was validated in patients requiring a prescription change. This multicenter, international prospective cohort study with the aim to validate a PD prescription model included patients treated with continuous ambulatory peritoneal dialysis. Patients were examined with the peritoneal function test (PFT) to determine the outcome of their current prescription and the necessity for a prescription change. For these patients, a new prescription was modeled using the PatientOnLine software (Fresenius Medical Care, Bad Homburg, Germany). Two to four weeks after implementation of the new PD regimen, a second PFT was performed. The validation of the prescription model included 54 patients. Predicted and measured peritoneal Kt/V were 1.52 ± 0.31 and 1.66 ± 0.35, and total (peritoneal + renal) Kt/V values were 1.96 ± 0.48 and 2.06 ± 0.44, respectively. Predicted and measured peritoneal creatinine clearances were 42.9 ± 8.6 and 43.0 ± 8.8 L/1.73 m2/week and total creatinine clearances were 65.3 ± 26.0 and 63.3 ± 21.8 L/1.73 m2/week, respectively. The analysis revealed a Pearson's correlation coefficient for peritoneal Kt/V of 0.911 and Lin's concordance coefficient of 0.829. The value of both coefficients was 0.853 for peritoneal creatinine clearance. Predicted and measured daily net ultrafiltration was 0.77 ± 0.49 and 1.16 ± 0.63 L/24 h, respectively. Pearson's correlation and Lin's concordance coefficient were 0.518 and 0.402, respectively. Predicted and measured peritoneal glucose absorption was 125.8 ± 38.8 and 79.9 ± 30.7 g/24 h, respectively, and Pearson's correlation and Lin's concordance coefficient were 0.914 and 0.477, respectively. With good predictability of peritoneal Kt/V and creatinine clearance, the present model provides support for individual dialysis prescription in clinical practice. Peritoneal glucose absorption and ultrafiltration are less predictable and are likely to be influenced by additional clinical factors to be taken into consideration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper examines the accuracy of software-based on-line energy estimation techniques. It evaluates today’s most widespread energy estimation model in order to investigate whether the current methodology of pure software-based energy estimation running on a sensor node itself can indeed reliably and accurately determine its energy consumption - independent of the particular node instance, the traffic load the node is exposed to, or the MAC protocol the node is running. The paper enhances today’s widely used energy estimation model by integrating radio transceiver switches into the model, and proposes a methodology to find the optimal estimation model parameters. It proves by statistical validation with experimental data that the proposed model enhancement and parameter calibration methodology significantly increases the estimation accuracy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Our goal was to validate accuracy, consistency, and reproducibility/reliability of a new method for determining cup orientation in total hip arthroplasty (THA). This method allows matching the 3D-model from CT images or slices with the projected pelvis on an anteroposterior pelvic radiograph using a fully automated registration procedure. Cup orientation (inclination and anteversion) is calculated relative to the anterior pelvic plane, corrected for individual malposition of the pelvis during radiograph acquisition. Measurements on blinded and randomized radiographs of 80 cadaver and 327 patient hips were investigated. The method showed a mean accuracy of 0.7 +/- 1.7 degrees (-3.7 degrees to 4.0 degrees) for inclination and 1.2 +/- 2.4 degrees (-5.3 degrees to 5.6 degrees) for anteversion in the cadaver trials and 1.7 +/- 1.7 degrees (-4.6 degrees to 5.5 degrees) for inclination and 0.9 +/- 2.8 degrees (-5.2 degrees to 5.7 degrees) for anteversion in the clinical data when compared to CT-based measurements. No systematic errors in accuracy were detected with the Bland-Altman analysis. The software consistency and the reproducibility/reliability were very good. This software is an accurate, consistent, reliable, and reproducible method to measure cup orientation in THA using a sophisticated 2D/3D-matching technique. Its robust and accurate matching algorithm can be expanded to statistical models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: The aim of this study was to establish and validate a three-dimensional imaging protocol for the assessment of Computed Tomography (CT) scans of abdominal aortic aneurysms in UK EVAR trials patients. Quality control and repeatability of anatomical measurements is important for the validity of any core laboratory. METHODS: Three different observers performed anatomical measurements on 50 preoperative CT scans of aortic aneurysms using the Vitrea 2 three-dimensional post-imaging software in a core laboratory setting. We assessed the accuracy of intra and inter observer repeatability of measurements, the time required for collection of measurements, 3 different levels of automation and 3 different automated criteria for measurement of neck length. RESULTS: None of the automated neck length measurements demonstrated sufficient accuracy and it was necessary to perform checking of the important automated landmarks. Good intra and limited inter observer agreement were achieved with three-dimensional assessment. Complete assessment of the aneurysm and iliacs took an average (SD) of 17.2 (4.1) minutes. CONCLUSIONS: Aortic aneurysm anatomy can be assessed reliably and quickly using three-dimensional assessment but for scans of limited quality, manual checking of important landmarks remains necessary. Using a set protocol, agreement between observers is satisfactory but not as good as within observers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The goal of this roadmap paper is to summarize the state-of-the-art and identify research challenges when developing, deploying and managing self-adaptive software systems. Instead of dealing with a wide range of topics associated with the field, we focus on four essential topics of self-adaptation: design space for self-adaptive solutions, software engineering processes for self-adaptive systems, from centralized to decentralized control, and practical run-time verification & validation for self-adaptive systems. For each topic, we present an overview, suggest future directions, and focus on selected challenges. This paper complements and extends a previous roadmap on software engineering for self-adaptive systems published in 2009 covering a different set of topics, and reflecting in part on the previous paper. This roadmap is one of the many results of the Dagstuhl Seminar 10431 on Software Engineering for Self-Adaptive Systems, which took place in October 2010.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to validate oxygen-sensitive 3He-MRI in noninvasive determination of the regional, two- and three-dimensional distribution of oxygen partial pressure. In a gas-filled elastic silicon ventilation bag used as a lung phantom, oxygen sensitive two- and three-dimensional 3He-MRI measurements were performed at different oxygen concentrations which had been equilibrated in a range of normal and pathologic values. The oxygen partial pressure distribution was determined from 3He-MRI using newly developed software allowing for mapping of oxygen partial pressure. The reference bulk oxygen partial pressure inside the phantom was measured by conventional respiratory gas analysis. In two-dimensional measurements, image-based and gas-analysis results correlated with r=0.98; in three-dimensional measurements the between-methods correlation coefficient was r=0.89. The signal-to-noise ratio of three-dimensional measurements was about half of that of two-dimensional measurements and became critical (below 3) in some data sets. Oxygen-sensitive 3He-MRI allows for noninvasive determination of the two- and three-dimensional distribution of oxygen partial pressure in gas-filled airspaces.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVES Chewing efficiency may be evaluated using cohesive specimen, especially in elderly or dysphagic patients. The aim of this study was to evaluate three two-coloured chewing gums for a colour-mixing ability test and to validate a new purpose built software (ViewGum©). METHODS Dentate participants (dentate-group) and edentulous patients with mandibular two-implant overdentures (IOD-group) were recruited. First, the dentate-group chewed three different types of two-coloured gum (gum1-gum3) for 5, 10, 20, 30 and 50 chewing cycles. Subsequently the number of chewing cycles with the highest intra- and inter-rater agreement was determined visually by applying a scale (SA) and opto-electronically (ViewGum©, Bland-Altman analysis). The ViewGum© software determines semi-automatically the variance of hue (VOH); inadequate mixing presents with larger VOH than complete mixing. Secondly, the dentate-group and the IOD-group were compared. RESULTS The dentate-group comprised 20 participants (10 female, 30.3±6.7 years); the IOD-group 15 participants (10 female, 74.6±8.3 years). Intra-rater and inter-rater agreement (SA) was very high at 20 chewing cycles (95.00-98.75%). Gums 1-3 showed different colour-mixing characteristics as a function of chewing cycles, gum1 showed a logarithmic association; gum2 and gum3 demonstrated more linear behaviours. However, the number of chewing cycles could be predicted in all specimens from VOH (all p<0.0001, mixed linear regression models). Both analyses proved discriminative to the dental state. CONCLUSION ViewGum© proved to be a reliable and discriminative tool to opto-electronically assess chewing efficiency, given an elastic specimen is chewed for 20 cycles and could be recommended for the evaluation of chewing efficiency in a clinical and research setting. CLINICAL SIGNIFICANCE Chewing is a complex function of the oro-facial structures and the central nervous system. The application of the proposed assessments of the chewing function in geriatrics or special care dentistry could help visualising oro-functional or dental comorbidities in dysphagic patients or those suffering from protein-energy malnutrition.