19 resultados para selection model
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The theory of ecological speciation suggests that assortative mating evolves most easily when mating preferences are;directly linked to ecological traits that are subject to divergent selection. Sensory adaptation can play a major role in this process,;because selective mating is often mediated by sexual signals: bright colours, complex song, pheromone blends and so on. When;divergent sensory adaptation affects the perception of such signals, mating patterns may change as an immediate consequence.;Alternatively, mating preferences can diverge as a result of indirect effects: assortative mating may be promoted by selection;against intermediate phenotypes that are maladapted to their (sensory) environment. For Lake Victoria cichlids, the visual environment;constitutes an important selective force that is heterogeneous across geographical and water depth gradients. We investigate;the direct and indirect effects of this heterogeneity on the evolution of female preferences for alternative male nuptial colours;(red and blue) in the genus Pundamilia. Here, we review the current evidence for divergent sensory drive in this system, extract;general principles, and discuss future perspectives
Resumo:
Osteoarticular allograft transplantation is a popular treatment method in wide surgical resections with large defects. For this reason hospitals are building bone data banks. Performing the optimal allograft selection on bone banks is crucial to the surgical outcome and patient recovery. However, current approaches are very time consuming hindering an efficient selection. We present an automatic method based on registration of femur bones to overcome this limitation. We introduce a new regularization term for the log-domain demons algorithm. This term replaces the standard Gaussian smoothing with a femur specific polyaffine model. The polyaffine femur model is constructed with two affine (femoral head and condyles) and one rigid (shaft) transformation. Our main contribution in this paper is to show that the demons algorithm can be improved in specific cases with an appropriate model. We are not trying to find the most optimal polyaffine model of the femur, but the simplest model with a minimal number of parameters. There is no need to optimize for different number of regions, boundaries and choice of weights, since this fine tuning will be done automatically by a final demons relaxation step with Gaussian smoothing. The newly developed synthesis approach provides a clear anatomically motivated modeling contribution through the specific three component transformation model, and clearly shows a performance improvement (in terms of anatomical meaningful correspondences) on 146 CT images of femurs compared to a standard multiresolution demons. In addition, this simple model improves the robustness of the demons while preserving its accuracy. The ground truth are manual measurements performed by medical experts.
Recurrent antitopographic inhibition mediates competitive stimulus selection in an attention network
Resumo:
Topographically organized neurons represent multiple stimuli within complex visual scenes and compete for subsequent processing in higher visual centers. The underlying neural mechanisms of this process have long been elusive. We investigate an experimentally constrained model of a midbrain structure: the optic tectum and the reciprocally connected nucleus isthmi. We show that a recurrent antitopographic inhibition mediates the competitive stimulus selection between distant sensory inputs in this visual pathway. This recurrent antitopographic inhibition is fundamentally different from surround inhibition in that it projects on all locations of its input layer, except to the locus from which it receives input. At a larger scale, the model shows how a focal top-down input from a forebrain region, the arcopallial gaze field, biases the competitive stimulus selection via the combined activation of a local excitation and the recurrent antitopographic inhibition. Our findings reveal circuit mechanisms of competitive stimulus selection and should motivate a search for anatomical implementations of these mechanisms in a range of vertebrate attentional systems.
Resumo:
Background Local Mate Competition (LMC) theory predicts a female should produce a more female-biased sex ratio if her sons compete with each other for mates. Because it provides quantitative predictions that can be experimentally tested, LMC is a textbook example of the predictive power of evolutionary theory. A limitation of many earlier studies in the field is that the population structure and mating system of the studied species are often estimated only indirectly. Here we use microsatellites to characterize the levels of inbreeding of the bark beetle Xylosandrus germanus, a species where the level of LMC is expected to be high. Results For three populations studied, genetic variation for our genetic markers was very low, indicative of an extremely high level of inbreeding (FIS = 0.88). There was also strong linkage disequilibrium between microsatellite loci and a very strong genetic differentiation between populations. The data suggest that matings among non-siblings are very rare (3%), although sex ratios from X. germanus in both the field and the laboratory have suggested more matings between non-sibs, and so less intense LMC. Conclusions Our results confirm that caution is needed when inferring mating systems from sex ratio data, especially when a lack of biological detail means the use of overly simple forms of the model of interest.
Resumo:
Transcatheter aortic valve implantation (TAVI) is a less invasive alternative to surgical aortic valve replacement (SAVR) for patients with symptomatic severe aortic stenosis (AS) and a high operative risk. Risk stratification plays a decisive role in the optimal selection of therapeutic strategies for AS patients. The accuracy of contemporary surgical risk algorithms for AS patients has spurred considerable debate especially in the higher risk patient population. Future trials will explore TAVI in patients at intermediate operative risk. During the design of the SURgical replacement and Transcatheter Aortic Valve Implantation (SURTAVI) trial, a novel concept of risk stratification was proposed based upon age in combination with a fixed number of predefined risk factors, which are relatively prevalent, easy to capture and with a reasonable impact on operative mortality. Retrospective application of this algorithm to a contemporary academic practice dealing with clinically significant AS patients allocates about one-fourth of these patients as being at intermediate operative risk. Further testing is required for validation of this new paradigm in risk stratification. Finally, the Heart Team, consisting of at least an interventional cardiologist and cardiothoracic surgeon, should have the decisive role in determining whether a patient could be treated with TAVI or SAVR.
Resumo:
The application of scientific-based conservation measures requires that sampling methodologies in studies modelling similar ecological aspects produce comparable results making easier their interpretation. We aimed to show how the choice of different methodological and ecological approaches can affect conclusions in nest-site selection studies along different Palearctic meta-populations of an indicator species. First, a multivariate analysis of the variables affecting nest-site selection in a breeding colony of cinereous vulture (Aegypius monachus) in central Spain was performed. Then, a meta-analysis was applied to establish how methodological and habitat-type factors determine differences and similarities in the results obtained by previous studies that have modelled the forest breeding habitat of the species. Our results revealed patterns in nesting-habitat modelling by the cinereous vulture throughout its whole range: steep and south-facing slopes, great cover of large trees and distance to human activities were generally selected. The ratio and situation of the studied plots (nests/random), the use of plots vs. polygons as sampling units and the number of years of data set determined the variability explained by the model. Moreover, a greater size of the breeding colony implied that ecological and geomorphological variables at landscape level were more influential. Additionally, human activities affected in greater proportion to colonies situated in Mediterranean forests. For the first time, a meta-analysis regarding the factors determining nest-site selection heterogeneity for a single species at broad scale was achieved. It is essential to homogenize and coordinate experimental design in modelling the selection of species' ecological requirements in order to avoid that differences in results among studies would be due to methodological heterogeneity. This would optimize best conservation and management practices for habitats and species in a global context.
Resumo:
BACKGROUND: The sensory drive hypothesis predicts that divergent sensory adaptation in different habitats may lead to premating isolation upon secondary contact of populations. Speciation by sensory drive has traditionally been treated as a special case of speciation as a byproduct of adaptation to divergent environments in geographically isolated populations. However, if habitats are heterogeneous, local adaptation in the sensory systems may cause the emergence of reproductively isolated species from a single unstructured population. In polychromatic fishes, visual sensitivity might become adapted to local ambient light regimes and the sensitivity might influence female preferences for male nuptial color. In this paper, we investigate the possibility of speciation by sensory drive as a byproduct of divergent visual adaptation within a single initially unstructured population. We use models based on explicit genetic mechanisms for color vision and nuptial coloration. RESULTS: We show that in simulations in which the adaptive evolution of visual pigments and color perception are explicitly modeled, sensory drive can promote speciation along a short selection gradient within a continuous habitat and population. We assumed that color perception evolves to adapt to the modal light environment that individuals experience and that females prefer to mate with males whose nuptial color they are most sensitive to. In our simulations color perception depends on the absorption spectra of an individual's visual pigments. Speciation occurred most frequently when the steepness of the environmental light gradient was intermediate and dispersal distance of offspring was relatively small. In addition, our results predict that mutations that cause large shifts in the wavelength of peak absorption promote speciation, whereas we did not observe speciation when peak absorption evolved by stepwise mutations with small effect. CONCLUSION: The results suggest that speciation can occur where environmental gradients create divergent selection on sensory modalities that are used in mate choice. Evidence for such gradients exists from several animal groups, and from freshwater and marine fishes in particular. The probability of speciation in a continuous population under such conditions may then critically depend on the genetic architecture of perceptual adaptation and female mate choice.
Resumo:
Adaptation does not necessarily lead to traits which are optimal for the population. This is because selection is often the strongest at the individual or gene level. The evolution of selfishness can lead to a 'tragedy of the commons', where traits such as aggression or social cheating reduce population size and may lead to extinction. This suggests that species-level selection will result whenever species differ in the incentive to be selfish. We explore this idea in a simple model that combines individual-level selection with ecology in two interacting species. Our model is not influenced by kin or trait-group selection. We find that individual selection in combination with competitive exclusion greatly increases the likelihood that selfish species go extinct. A simple example of this would be a vertebrate species that invests heavily into squabbles over breeding sites, which is then excluded by a species that invests more into direct reproduction. A multispecies simulation shows that these extinctions result in communities containing species that are much less selfish. Our results suggest that species-level selection and community dynamics play an important role in regulating the intensity of conflicts in natural populations.
Evolutionary demography of long-lived monocarpic perennials: a time-lagged integral projection model
Resumo:
1. The evolution of flowering strategies (when and at what size to flower) in monocarpic perennials is determined by balancing current reproduction with expected future reproduction, and these are largely determined by size-specific patterns of growth and survival. However, because of the difficulty in following long-lived individuals throughout their lives, this theory has largely been tested using short-lived species (< 5 years). 2. Here, we tested this theory using the long-lived monocarpic perennial Campanula thyrsoides which can live up to 16 years. We used a novel approach that combined permanent plot and herb chronology data from a 3-year field study to parameterize and validate integral projection models (IPMs). 3. Similar to other monocarpic species, the rosette leaves of C. thyrsoides wither over winter and so size cannot be measured in the year of flowering. We therefore extended the existing IPM framework to incorporate an additional time delay that arises because flowering demography must be predicted from rosette size in the year before flowering. 4. We found that all main demographic functions (growth, survival probability, flowering probability and fecundity) were strongly size-dependent and there was a pronounced threshold size of flowering. There was good agreement between the predicted distribution of flowering ages obtained from the IPMs and that estimated in the field. Mostly, there was good agreement between the IPM predictions and the direct quantitative field measurements regarding the demographic parameters lambda, R-0 and T. We therefore conclude that the model captures the main demographic features of the field populations. 5. Elasticity analysis indicated that changes in the survival and growth function had the largest effect (c. 80%) on lambda and this was considerably larger than in short-lived monocarps. We found only weak selection pressure operating on the observed flowering strategy which was close to the predicted evolutionary stable strategy. 6. Synthesis. The extended IPM accurately described the demography of a long-lived monocarpic perennial using data collected over a relatively short period. We could show that the evolution of flowering strategies in short- and long-lived monocarps seem to follow the same general rules but with a longevity-related emphasis on survival over fecundity.
Resumo:
Most studies on selection in plants estimate female fitness components and neglect male mating success, although the latter might also be fundamental to understand adaptive evolution. Information from molecular genetic markers can be used to assess determinants of male mating success through parentage analyses. We estimated paternal selection gradients on floral traits in a large natural population of the herb Mimulus guttatus using a paternity probability model and maximum likelihood methods. This analysis revealed more significant selection gradients than a previous analysis based on regression of estimated male fertilities on floral traits. There were differences between results of univariate and multivariate analyses most likely due to the underlying covariance structure of the traits. Multivariate analysis, which corrects for the covariance structure of the traits, indicated that male mating success declined with distance from and depended on the direction to the mother plants. Moreover, there was directional selection for plants with fewer open flowers which have smaller corollas, a smaller anther-stigma separation, more red dots on the corolla and a larger fluctuating asymmetry therein. For most of these traits, however, there was also stabilizing selection indicating that there are intermediate optima for these traits. The large number of significant selection gradients in this study shows that even in relatively large natural populations where not all males can be sampled, it is possible to detect significant paternal selection gradients, and that such studies can give us valuable information required to better understand adaptive plant evolution.
Resumo:
In the setting of high-dimensional linear models with Gaussian noise, we investigate the possibility of confidence statements connected to model selection. Although there exist numerous procedures for adaptive (point) estimation, the construction of adaptive confidence regions is severely limited (cf. Li in Ann Stat 17:1001–1008, 1989). The present paper sheds new light on this gap. We develop exact and adaptive confidence regions for the best approximating model in terms of risk. One of our constructions is based on a multiscale procedure and a particular coupling argument. Utilizing exponential inequalities for noncentral χ2-distributions, we show that the risk and quadratic loss of all models within our confidence region are uniformly bounded by the minimal risk times a factor close to one.
Resumo:
AIM Information regarding the selection procedure for selective dorsal rhizotomy (SDR) in children with spastic cerebral palsy (CP) is scarce. Therefore, the aim of this study was to summarize the selection criteria for SDR in children with spastic CP. METHOD A systematic review was carried out using the following databases: MEDLINE, CINAHL, EMBASE, PEDro, and the Cochrane Library. Additional studies were identified in the reference lists. Search terms included 'selective dorsal rhizotomy', 'functional posterior rhizotomy', 'selective posterior rhizotomy', and 'cerebral palsy'. Studies were selected if they studied mainly children (<18y of age) with spastic CP, if they had an intervention of SDR, if they had a detailed description of the selection criteria, and if they were in English. The levels of evidence, conduct of studies, and selection criteria for SDR were scored. RESULTS Fifty-two studies were included. Selection criteria were reported in 16 International Classification of Functioning, Disability and Health model domains including 'body structure and function' (details concerning spasticity [94%], other movement abnormalities [62%], and strength [54%]), 'activity' (gross motor function [27%]), and 'personal and environmental factors' (age [44%], diagnosis [50%], motivation [31%], previous surgery [21%], and follow-up therapy [31%]). Most selection criteria were not based on standardized measurements. INTERPRETATION Selection criteria for SDR vary considerably. Future studies should describe clearly the selection procedure. International meetings of experts should develop more uniform consensus guidelines, which could form the basis for selecting candidates for SDR.
Resumo:
Most empirical studies support a decline in speciation rates through time, although evidence for constant speciation rates also exists. Declining rates have been explained by invoking pre-existing niches, whereas constant rates have been attributed to non-adaptive processes such as sexual selection and mutation. Trends in speciation rate and the processes underlying it remain unclear, representing a critical information gap in understanding patterns of global diversity. Here we show that the temporal trend in the speciation rate can also be explained by frequency-dependent selection. We construct a frequency-dependent and DNA sequence-based model of speciation. We compare our model to empirical diversity patterns observed for cichlid fish and Darwin's finches, two classic systems for which speciation rates and richness data exist. Negative frequency-dependent selection predicts well both the declining speciation rate found in cichlid fish and explains their species richness. For groups like the Darwin's finches, in which speciation rates are constant and diversity is lower, speciation rate is better explained by a model without frequency-dependent selection. Our analysis shows that differences in diversity may be driven by incipient species abundance with frequency-dependent selection. Our results demonstrate that genetic-distance-based speciation and frequency-dependent selection are sufficient to explain the high diversity observed in natural systems and, importantly, predict decay through time in speciation rate in the absence of pre-existing niches.
Resumo:
It is commonly assumed that natural selection imposed by predators is the prevailing force driving the evolution of aposematic traits. Here, we demonstrate that aposematic signals are shaped by sexual selection as well. We evaluated sexual selection for coloration brightness in populations of the poison frog Oophaga [Dendrobates] pumilio in Panama's Bocas del Toro archipelago. We assessed female preferences for brighter males by manipulating the perceived brightness of spectrally matched males in two-way choice experiments. We found strong female preferences for bright males in two island populations and weaker or ambiguous preferences in females from mainland populations. Spectral reflectance measurements, coupled with an O. pumilio-specific visual processing model, showed that O. pumilio coloration was significantly brighter in island than in mainland morphs. In one of the island populations (Isla Solarte), males were significantly more brightly colored than females. Taken together, these results provide evidence for directional sexual selection on aposematic coloration and document sexual dimorphism in vertebrate warning coloration. Although aposematic signals have long been upheld as exemplars of natural selection, our results show that sexual selection should not be ignored in studies of aposematic evolution.