Statistical inference for the optimal approximating model


Autoria(s): Rohde, Angelika; Dümbgen, Lutz
Data(s)

01/04/2013

Resumo

In the setting of high-dimensional linear models with Gaussian noise, we investigate the possibility of confidence statements connected to model selection. Although there exist numerous procedures for adaptive (point) estimation, the construction of adaptive confidence regions is severely limited (cf. Li in Ann Stat 17:1001–1008, 1989). The present paper sheds new light on this gap. We develop exact and adaptive confidence regions for the best approximating model in terms of risk. One of our constructions is based on a multiscale procedure and a particular coupling argument. Utilizing exponential inequalities for noncentral χ2-distributions, we show that the risk and quadratic loss of all models within our confidence region are uniformly bounded by the minimal risk times a factor close to one.

Formato

application/pdf

Identificador

http://boris.unibe.ch/41523/1/Rohde_Duembgen_PTRF5.pdf

Rohde, Angelika; Dümbgen, Lutz (2013). Statistical inference for the optimal approximating model. Probability Theory and Related Fields, 155(3-4), pp. 839-865. Springer 10.1007/s00440-012-0414-7 <http://dx.doi.org/10.1007/s00440-012-0414-7>

doi:10.7892/boris.41523

info:doi:10.1007/s00440-012-0414-7

urn:issn:0178-8051

Idioma(s)

eng

Publicador

Springer

Relação

http://boris.unibe.ch/41523/

Direitos

info:eu-repo/semantics/openAccess

Fonte

Rohde, Angelika; Dümbgen, Lutz (2013). Statistical inference for the optimal approximating model. Probability Theory and Related Fields, 155(3-4), pp. 839-865. Springer 10.1007/s00440-012-0414-7 <http://dx.doi.org/10.1007/s00440-012-0414-7>

Palavras-Chave #510 Mathematics
Tipo

info:eu-repo/semantics/article

info:eu-repo/semantics/publishedVersion

PeerReviewed