9 resultados para resin bonding

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In dentistry the restoration of decayed teeth is challenging and makes great demands on both the dentist and the materials. Hence, fiber-reinforced posts have been introduced. The effects of different variables on the ultimate load on teeth restored using fiber-reinforced posts is controversial, maybe because the results are mostly based on non-standardized in vitro tests and, therefore, give inhomogeneous results. This study combines the advantages of in vitro tests and finite element analysis (FEA) to clarify the effects of ferrule height, post length and cementation technique used for restoration. Sixty-four single rooted premolars were decoronated (ferrule height 1 or 2 mm), endodontically treated and restored using fiber posts (length 2 or 7 mm), composite fillings and metal crowns (resin bonded or cemented). After thermocycling and chewing simulation the samples were loaded until fracture, recording first damage events. Using UNIANOVA to analyze recorded fracture loads, ferrule height and cementation technique were found to be significant, i.e. increased ferrule height and resin bonding of the crown resulted in higher fracture loads. Post length had no significant effect. All conventionally cemented crowns with a 1-mm ferrule height failed during artificial ageing, in contrast to resin-bonded crowns (75% survival rate). FEA confirmed these results and provided information about stress and force distribution within the restoration. Based on the findings of in vitro tests and computations we concluded that crowns, especially those with a small ferrule height, should be resin bonded. Finally, centrally positioned fiber-reinforced posts did not contribute to load transfer as long as the bond between the tooth and composite core was intact.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim was to compare eight types of luting agents when used to bond six indirect, laboratory restorative materials to dentin. Cylinders of the six restorative materials (Esteticor Avenir [gold alloy], Tritan [titanium], NobelRondo [feldspathic porcelain], Finesse All-Ceramic [leucite-glass ceramic], Lava [zirconia], and Sinfony [resin composite]) were ground and air-abraded. Cylinders of feldspathic porcelain and glass ceramic were additionally etched with hydrofluoric acid and were silane-treated. The cylinders were luted to ground human dentin with eight luting agents (DeTrey Zinc [zinc phosphate cement], Fuji I [conventional glass ionomer cement], Fuji Plus [resin-modified glass ionomer cement], Variolink II [conventional etch-and-rinse resin cement], Panavia F2.0 and Multilink [self-etch resin cements], and RelyX Unicem Aplicap and Maxcem [self-adhesive resin cements]). After water storage at 37°C for one week, the shear bond strength of the specimens (n=8/group) was measured, and the fracture mode was stereomicroscopically examined. Bond strength data were analyzed with two-factorial analysis of variance (ANOVA) followed by Newman-Keuls' Multiple Range Test (?=0.05). Both the restorative material and the luting agent had a significant effect on bond strength, and significant interaction was noted between the two variables. Zinc phosphate cement and glass ionomer cements produced the lowest bond strengths, whereas the highest bond strengths were found with the two self-etch and one of the self-adhesive resin cements. Generally, the fracture mode varied markedly with the restorative material. The luting agents had a bigger influence on bond strength between restorative materials and dentin than was seen with the restorative material.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVES: The objectives of this in vitro study were (1) to assess the bond strength of the universal cement RelyX Unicem to dentin and to compare it with three conventional resin cements, (2) to test the influence of aging on their bonding capacity and (3) to test the influence of the operator on bonding quality by performing the same test in two different centers. METHODS: 160 third molars, divided into 80 for tests at the University of Zurich (Z) and 80 for tests at the University of Berne (B), were assigned to 2 x 8 subgroups of 10 teeth each. The specimens were prepared with the corresponding bonding agents and acrylic rods were luted either with RelyX Unicem (U), RelyX ARC (A), Multilink (M) or Panavia 21 (P). All specimens were stored in water for 24h (W) and half of the specimens were subjected to 1500 cycles of thermocycling (5 degrees C and 55 degrees C) (T). Bond strength was measured by means of a shear test. RESULTS: After water storage RelyX Unicem exhibited lowest bond strength (UWZ: 9.2+/-1.6 MPa, UWB: 9.9+/-1.2 MPa, AWZ: 15.3+/-6.0 MPa, AWB: 12.2+/-4.3 MPa, MWZ: 15.6+/-3.3 MPa, MWB: 12.4 MPa+/-2.4, PWZ: 13.4+/-2.9 MPa, PWB: 14.9+/-2.6 MPa). Thermocycling affected the bonding performance of all four cements. However, bond strength of RelyX Unicem was least influenced by thermocycling (UTZ: 9.4+/-2.9 MPa, UTB: 8.6+/-1.3 MPa, ATZ: 11.4+/-6.3 MPa, ATB: 13.3+/-3.7 MPa, MTZ: 15.4+/-3.1 MPa, MTB: 10.3+/-2.4 MPa, PTZ: 11.1+/-2.8 MPa, PTB: 11.3+/-2.8 MPa). SIGNIFICANCE: Although the bond strength of RelyX Unicem to dentin was lower in comparison to RelyX ARC, Multilink and Panavia 21, its bond strength was less sensitive to variations in handling and aging.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE The purpose of this study was to evaluate the bonding of glass ionomer cements (GICs) to sound and caries-affected dentin by microtensile bond strength (μTBS) and nanoleakage (NL) tests. METHODS Occlusal cavity preparations were made in 36 sound primary molars. Half of the specimens were submitted to a pH-cycling model to create simulated caries-affected dentin. Teeth were randomly restored with one of the three materials: (1) resin-modified GIC with nanoparticles (Ketac N100; KN); (2) resin-modified GIC (Vitremer; VI); and (3) high-viscosity GIC (Ketac Molar Easy Mix; KM). Specimens were tested using a microtensile test (1 mm/minute). One specimen from each tooth was immersed in ammoniacal silver nitrate for 24 hours and revealed after eight hours to assess interfacial NL. The μTBS means were analyzed by 2-way analysis of variance and Tukey's post hoc test. For NL, Kruskal-Wallis and Mann-Whitney tests were used (P<.05). RESULTS No difference was found between sound and caries-affected dentin (P>.05). KM showed the lowest GIC-dentin μTBS values, while VI and KN showed higher values. Infiltration of ammoniacal silver nitrate into the adhesive interface was not affected by sound or caries-affected dentin. CONCLUSION Caries-affected dentin does not jeopardize the bonding of glass ionomer cements to primary tooth dentin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION Light cure of resin-based adhesives is the mainstay of orthodontic bonding. In recent years, alternatives to conventional halogen lights offering reduced curing time and the potential for lower attachment failure rates have emerged. The relative merits of curing lights in current use, including halogen-based lamps, light-emitting diodes (LEDs), and plasma arc lights, have not been analyzed systematically. In this study, we reviewed randomized controlled trials and controlled clinical trials to assess the risks of attachment failure and bonding time in orthodontic patients in whom brackets were cured with halogen lights, LEDs, or plasma arc systems. METHODS Multiple electronic database searches were undertaken, including MEDLINE, EMBASE, and the Cochrane Oral Health Group's Trials Register, CENTRAL. Language restrictions were not applied. Unpublished literature was searched on ClinicalTrials.gov, the National Research Register, Pro-Quest Dissertation Abstracts, and Thesis database. Search terms included randomized controlled trial, controlled clinical trial, random allocation, double blind method, single blind method, orthodontics, LED, halogen, bond, and bracket. Authors of primary studies were contacted as required, and reference lists of the included studies were screened. RESULTS Randomized controlled trials and clinical controlled trials directly comparing conventional halogen lights, LEDs, or plasma arc systems involving patients with full arch, fixed, or bonded orthodontic appliances (not banded) with follow-up periods of a minimum of 6 months were included. Using predefined forms, 2 authors undertook independent extraction of articles; disagreements were resolved by discussion. The assessment of the risk of bias of the randomized controlled trials was based on the Cochrane Risk of Bias tool. Ten studies met the inclusion criteria; 2 were excluded because of high risk of bias. In the comparison of bond failure risk with halogen lights and plasma arc lights, 1851 brackets were included in both groups. Little statistical heterogeneity was observed in this analysis (I(2) = 4.8%; P = 0.379). There was no statistical difference in bond failure risk between the groups (OR, 0.92; 95% CI, 0.68-1.23; prediction intervals, 0.54, 1.56). Similarly, no statistical difference in bond failure risk was observed in the meta-analysis comparing halogen lights and LEDs (OR, 0.96; 95% CI, 0.64-1.44; prediction intervals, 0.07, 13.32). The pooled estimates from both comparisons were OR, 0.93; 95% CI, 0.74-1.17; and prediction intervals, 0.69, 1.17. CONCLUSIONS There is no evidence to support the use of 1 light cure type over another based on risk of attachment failure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AIM Preparation of the lamina during osteo-odonto-keratoprosthesis (OOKP) design is complex, and its longevity and watertightness important. To date, only acrylic bone cements have been used for bonding the optical cylinder to the tooth dentine. Our aim was to evaluate different dental adhesives for OOKP preparation. METHODS Specimens of bovine teeth were produced by preparing 1.5-mm thick dentine slices with holes having a diameter of 3.5 mm. Each group (n=10 per group) was luted with either classic poly-(methyl methacrylate) (PMMA) bone cement, universal resin cement or glass ionomer cement. All specimens underwent force measurement using a uniaxial traction machine. RESULTS The highest mean force required to break the bond was measured for PMMA bone cement (128.2 N) followed by universal resin cement (127.9 N), with no statistically significant difference. Glass ionomer cement showed significantly lower force resistance (78.1 N). CONCLUSIONS Excellent bonding strength combined with easy application was found for universal resin cement, and thus, it is a potential alternative to acrylic bone cement in OOKP preparation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE To determine the impact of long-term storage on adhesion between titanium and zirconia using resin cements. MATERIALS AND METHODS Titanium grade 4 blocks were adhesively fixed onto zirconia disks with four resin cements: Panavia F 2.0 (Kuraray Europe), GC G-Cem (GC Europe), RelyX Unicem (3M ESPE), and SmartCem 2 (Dentsply DeguDent). Shear bond strength was determined after storage in a water bath for 24 h, 16, 90, and 150 days at 37°C, and after 6000 cycles between 5°C and 55°C. Fracture behavior was evaluated using scanning electron microscopy. RESULTS After storage for at least 90 days and after thermocycling, GC G-Cem (16.9 MPa and 15.1 MPa, respectively) and RelyX Unicem (10.8 MPa and 15.7 MPa, respectively) achieved higher shear bond strength compared to SmartCem 2 (7.1 MPa and 4.0 MPa, respectively) and Panavia F2 (4.1 MPa and 7.4 MPa, respectively). At day 150, GC G-Cem and RelyX Unicem caused exclusively mixed fractures. SmartCem 2 and Panavia F2 showed adhesive fractures in one-third of the cases; all other fractures were of mixed type. After 24 h (GC G-Cem: 26.0, RelyX Unicem: 20.5 MPa, SmartCem 2: 16.1 MPa, Panavia F2: 23.6 MPa) and 16 days (GC G-Cem: 12.8, RelyX Unicem: 14.2 MPa, SmartCem 2: 9.8 MPa, Panavia F2: 14.7 MPa) of storage, shear bond strength was similar among the four cements. CONCLUSION Long-term storage and thermocycling differentially affects the bonding of resin cement between titanium and zirconia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: To investigate the effect of airborne-particle abrasion or diamond bur preparation as pretreatment steps of non-carious cervical root dentin regarding substance loss and bond strength. Methods: 45 dentin specimens produced from crowns of extracted human incisors by grinding the labial surfaces with silicon carbide papers (control) were treated with one of three adhesive systems (Group 1A-C; A: OptiBond FL, B: Clearfil SE Bond, or C: Scotchbond Universal; n=15/adhesive system). Another 135 dentin specimens (n=15/group) produced from the labial, non-carious cervical root part of extracted human incisors were treated with one of the adhesive systems after either no pre-treatment (Group 2A-C), pre-treatment with airborne-particle abrasion (CoJet Prep and 50 µm aluminum oxide powder; Group 3A-C), or pre-treatment with diamond bur preparation (40 µm grit size; Group 4A-C). Substance loss caused by the pre-treatment was measured in Groups 3 and 4. After treatment with the adhesive systems, resin composite was applied and all specimens were stored (37°C, 100% humidity, 24 hours) until measurement of microshear bond strength (µSBS). Data were analyzed with a nonparametric ANOVA followed by Kruskal-Wallis and Wilcoxon rank sum tests (level of significance: alpha=0.05). Results: Overall substance loss was significantly lower in Group 3 (median: 19 µm) than in Group 4 (median: 113 µm; p<0.0001). There were no significant differences in µSBS between the adhesive systems (A-C) in Group 1, Group 3, and Group 4 (p>=0.133). In Group 2, OptiBond FL (Group 2A) and Clearfil SE Bond (Group 2B) yielded significantly higher µSBS than Scotchbond Universal (Group 2C; p<=0.032). For OptiBond FL and Clearfil SE Bond, there were no significant differences in µSBS between the ground crown dentin and the non-carious cervical root dentin regardless of any pre-treatment of the latter (both p=0.661). For Scotchbond Universal, the µSBS to non-carious cervical root dentin without pre-treatment was significantly lower than to ground crown dentin and to non-carious cervical root dentin pre-treated with airborne-particle abrasion or diamond bur preparation p<=0.014).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND Recent technical development allows the digital manufacturing of monolithic reconstructions with high-performance materials. For implant-supported crowns, the fixation requires an abutment design onto which the reconstruction can be bonded. PURPOSE The aim of this laboratory investigation was to analyze stiffness, strength, and failure modes of implant-supported, computer-assisted design and computer-aided manufacturing (CAD/CAM)-generated resin nano ceramic (RNC) crowns bonded to three different titanium abutments. MATERIALS AND METHODS Eighteen monolithic RNC crowns were produced and loaded in a universal testing machine under quasi-static condition according to DIN ISO 14801. With regard to the type of titanium abutment, three groups were defined: (1) prefabricated cementable standard; (2) CAD/CAM-constructed individualized; and (3) novel prefabricated bonding base. Stiffness and strength were measured and analyzed statistically with Wilcoxon rank sum test. Sections of the specimens were examined microscopically. RESULTS Stiffness demonstrated high stability for all specimens loaded in the physiological loading range with means and standard deviations of 1,579 ± 120 N/mm (group A), 1,733 ± 89 N/mm (group B), and 1,704 ± 162 N/mm (group C). Mean strength of the novel prefabricated bonding base (group C) was 17% lower than of the two other groups. Plastic deformations were detectable for all implant-abutment crown connections. CONCLUSIONS Monolithic implant crowns made of RNC seem to represent a feasible and stable prosthetic construction under laboratory testing conditions with strength higher than the average occlusal force, independent of the different abutment designs used in this investigation.