91 resultados para range of motion (ROM)
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Femoroacetabular impingement due to metaphyseal prominence is associated with the slippage in patients with slipped capital femoral epiphysis (SCFE), but it is unclear whether the changes in femoral metaphysis morphology are associated with range of motion (ROM) changes or type of impingement. We asked whether the femoral head-neck junction morphology influences ROM analysis and type of impingement in addition to the slip angle and the acetabular version. We analyzed in 31 patients with SCFE the relationship between the proximal femoral morphology and limitation in ROM due to impingement based on simulated ROM of preoperative CT data. The ROM was analyzed in relation to degree of slippage, femoral metaphysis morphology, acetabular version, and pathomechanical terms of "impaction" and "inclusion." The ROM in the affected hips was comparable to that in the unaffected hips for mild slippage and decreased for slippage of more than 30 degrees. The limitation correlated with changes in the metaphysic morphology and changed acetabular version. Decreased head-neck offset in hips with slip angles between 30 degrees and 50 degrees had restricted ROM to nearly the same degree as in severe SCFE. Therefore, in addition to the slip angle, the femoral metaphysis morphology should be used as criteria for reconstructive surgery.
Resumo:
Femoroacetabular impingement (FAI) before or after Periacetabular Osteotomy (PAO) is surprisingly frequent and surgeons need to be aware of the risk preoperatively and be able to avoid it intraoperatively. In this paper we present a novel computer assisted planning and navigation system for PAO with impingement analysis and range of motion (ROM) optimization. Our system starts with a fully automatic detection of the acetabular rim, which allows for quantifying the acetabular morphology with parameters such as acetabular version, inclination and femoral head coverage ratio for a computer assisted diagnosis and planning. The planned situation was optimized with impingement simulation by balancing acetabuar coverage with ROM. Intra-operatively navigation was conducted until the optimized planning situation was achieved. Our experimental results demonstrated: 1) The fully automated acetabular rim detection was validated with accuracy 1.1 ± 0.7mm; 2) The optimized PAO planning improved ROM significantly compared to that without ROM optimization; 3) By comparing the pre-operatively planned situation and the intra-operatively achieved situation, sub-degree accuracy was achieved for all directions.
Resumo:
REASONS FOR PERFORMING STUDY: The diagnosis of equine back disorders is challenging. Objectively determining movement of the vertebral column may therefore be of value in a clinical setting. OBJECTIVES: To establish whether surface-mounted inertial measurement units (IMUs) can be used to establish normal values for range of motion (ROM) of the vertebral column in a uniform population of horses trotting under different conditions. STUDY DESIGN: Vertebral ROM was established in Franches-Montagnes stallions and a general population of horses and the variability in measurements compared between the two groups. Repeatability and the influence of specific exercise condition (on ROM) were assessed. Finally, attempts were made to explain the findings of the study through the evaluation of factors that might influence ROM. METHODS: Dorsoventral (DV) and mediolateral (ML) vertebral ROM was measured at a trot under different exercise conditions in 27 Franches-Montagnes stallions and six general population horses using IMUs distributed over the vertebral column. RESULTS: Variability in the ROM measurements was significantly higher for general population horses than for Franches-Montagnes stallions (both DV and ML ROM). Repeatability was strong to very strong for DV measurements and moderate for ML measurements. Trotting under saddle significantly reduced the ROM, with sitting trot resulting in a significantly lower ROM than rising trot. Age is unlikely to explain the low variability in vertebral ROM recorded in the Franches-Montagnes horses, while this may be associated with conformational factors. CONCLUSIONS: It was possible to establish a normal vertebral ROM for a group of Franches-Montagnes stallions. While within-breed variation was low in this population, further studies are necessary to determine variation in vertebral ROM for other breeds and to assess their utility for diagnosis of equine back disorders.
Resumo:
Objective In the pediatric population traumatic injuries of the upper extremity are common. After therapy a decision has to be made if the mobility of the joint lies within a normal range. The purpose of this study was to give an introduction to normative data. We investigate if there is a significant difference in the range of motion (ROM) between male and female probands and furthermore, if an effect of the age can be detected. Methods We performed an institutional review board-approved study of healthy girls and boys aged between 2 and 16 years without any medical history of an upper extremity fracture. We investigated the active ROM of the elbow, wrist, metacarpophalangeal, and interphalangeal joints. Furthermore, age, handedness, weight, and height were recorded. A total of 171 adolescents with a mean age of 10.6 years were included and separated into four cohorts by age: 2 to 5, 6 to 10, 11 to 13, and 14 to 16 years. Results We found significant differences between the genders in the age group from 11 to 13 years for the flexion of the elbow, the pronation, the flexion of the interphalangeal joint of the thumb, as well as the flexion of the metacarpophalangeal joints of digitus II to V. Furthermore, a significant difference in the same joints except from the elbow flexion could be demonstrated between the genders. Conclusion Our study contributes normative data for upper extremity ROM in the pediatric population and presents a gender-related difference in certain joints. Clinical Relevance Normative data for the ROM of upper extremity joints in children is helpful for the evaluation of pediatric orthopedic patients and provides the framework for therapeutic resolution. Since a great number of traumatic injuries in children affect the upper extremity, this information may help the physician to estimate the impact of the injury and decide on the therapeutic management.
Resumo:
BACKGROUND Residual acetabular dysplasia is seen in combination with femoral pathomorphologies including an aspherical femoral head and valgus neck-shaft angle with high antetorsion. It is unclear how these femoral pathomorphologies affect range of motion (ROM) and impingement zones after periacetabular osteotomy. QUESTIONS/PURPOSES (1) Does periacetabular osteotomy (PAO) restore the typically excessive ROM in dysplastic hips compared with normal hips; (2) how do impingement locations differ in dysplastic hips before and after PAO compared with normal hips; (3) does a concomitant cam-type morphology adversely affect internal rotation; and (4) does a concomitant varus-derotation intertrochanteric osteotomy (IO) affect external rotation? METHODS Between January 1999 and March 2002, we performed 200 PAOs for dysplasia; of those, 27 hips (14%) met prespecified study inclusion criteria, including availability of a pre- and postoperative CT scan that included the hip and the distal femur. In general, we obtained those scans to evaluate the pre- and postoperative acetabular and femoral morphology, the degree of acetabular reorientation, and healing of the osteotomies. Three-dimensional surface models based on CT scans of 27 hips before and after PAO and 19 normal hips were created. Normal hips were obtained from a population of CT-based computer-assisted THAs using the contralateral hip after exclusion of symptomatic hips or hips with abnormal radiographic anatomy. Using validated and computerized methods, we then determined ROM (flexion/extension, internal- [IR]/external rotation [ER], adduction/abduction) and two motion patterns including the anterior (IR in flexion) and posterior (ER in extension) impingement tests. The computed impingement locations were assigned to anatomical locations of the pelvis and the femur. ROM was calculated separately for hips with (n = 13) and without (n = 14) a cam-type morphology and PAOs with (n = 9) and without (n = 18) a concomitant IO. A post hoc power analysis based on the primary research question with an alpha of 0.05 and a beta error of 0.20 revealed a minimal detectable difference of 4.6° of flexion. RESULTS After PAO, flexion, IR, and adduction/abduction did not differ from the nondysplastic control hips with the numbers available (p ranging from 0.061 to 0.867). Extension was decreased (19° ± 15°; range, -18° to 30° versus 28° ± 3°; range, 19°-30°; p = 0.017) and ER in 0° flexion was increased (25° ± 18°; range, -10° to 41° versus 38° ± 7°; range, 17°-41°; p = 0.002). Dysplastic hips had a higher prevalence of extraarticular impingement at the anteroinferior iliac spine compared with normal hips (48% [13 of 27 hips] versus 5% [one of 19 hips], p = 0.002). A PAO increased the prevalence of impingement for the femoral head from 30% (eight of 27 hips) preoperatively to 59% (16 of 27 hips) postoperatively (p = 0.027). IR in flexion was decreased in hips with a cam-type deformity compared with those with a spherical femoral head (p values from 0.002 to 0.047 for 95°-120° of flexion). A concomitant IO led to a normalization of ER in extension (eg, 37° ± 7° [range, 21°-41°] of ER in 0° of flexion in hips with concomitant IO compared with 38° ± 7° [range, 17°-41°] in nondysplastic control hips; p = 0.777). CONCLUSIONS Using computer simulation of hip ROM, we could show that the PAO has the potential to restore the typically excessive ROM in dysplastic hips. However, a PAO can increase the prevalence of secondary intraarticular impingement of the aspherical femoral head and extraarticular impingement of the anteroinferior iliac spines in flexion and internal rotation. A cam-type morphology can result in anterior impingement with restriction of IR. Additionally, a valgus hip with high antetorsion can result in posterior impingement with decreased ER in extension, which can be normalized with a varus derotation IO of the femur. However, indication of an additional IO needs to be weighed against its inherent morbidity and possible complications. The results are based on a limited number of hips with a pre- and postoperative CT scan after PAO. Future prospective studies are needed to verify the current results based on computer simulation and to test their clinical importance.
Resumo:
Patients after Legg-Calvé-Perthes disease (LCPD) often develop pain, impaired ROM, abductor weakness, and progression of osteoarthritis (OA) in early adulthood. Based on intraoperative observations during surgical hip dislocation, we established an algorithm for more detailed characterization of the underlying pathomorphologies with a proposed joint-preserving surgical treatment.
Resumo:
Legg-Calvé-Perthes disease (LCPD) often results in a deformity that can be considered as a complex form of femoroacetabular impingement (FAI). Improved preoperative characterization of the FAI problem based on a noninvasive three-dimensional computer analysis may help to plan the appropriate operative treatment.
Resumo:
The range of motion of normal hips and hips with femoroacetabular impingement relative to some specific anatomic reference landmarks is unknown. We therefore described: (1) the range of motion pattern relative to landmarks; (2) the location of the impingement zones in normal and impinging hips; and (3) the influence of surgical débridement on the range of motion. We used a previously developed and validated noninvasive 3-D CT-based method for kinematic hip analysis to compare the range of motion pattern, the location of impingement, and the effect of virtual surgical reconstruction in 28 hips with anterior femoroacetabular impingement and a control group of 33 normal hips. Hips with femoroacetabular impingement had decreased flexion, internal rotation, and abduction. Internal rotation decreased with increasing flexion and adduction. The calculated impingement zones were localized in the anterosuperior quadrant of the acetabulum and were similar in the two groups and in impingement subgroups. The average improvement of internal rotation was 5.4 degrees for pincer hips, 8.5 degrees for cam hips, and 15.7 degrees for mixed impingement. This method helps the surgeon quantify the severity of impingement and choose the appropriate treatment option; it provides a basis for future image-guided surgical reconstruction in femoroacetabular impingement with less invasive techniques.
Resumo:
BACKGROUND: Various osteotomy techniques have been developed to correct the deformity caused by slipped capital femoral epiphysis (SCFE) and compared by their clinical outcomes. The aim of the presented study was to compare an intertrochanteric uniplanar flexion osteotomy with a multiplanar osteotomy by their ability to improve postoperative range of motion as measured by simulation of computed tomographic data in patients with SCFE. METHODS: We examined 19 patients with moderate or severe SCFE as classified based on slippage angle. A computer program for the simulation of movement and osteotomy developed in our laboratory was used for study execution. According to a 3-dimensional reconstruction of the computed tomographic data, the physiological range was determined by flexion, abduction, and internal rotation. The multiplanar osteotomy was compared with the uniplanar flexion osteotomy. Both intertrochanteric osteotomy techniques were simulated, and the improvements of the movement range were assessed and compared. RESULTS: The mean slipping and thus correction angles measured were 25 degrees (range, 8-46 degrees) inferior and 54 degrees (range, 32-78 degrees) posterior. After the simulation of multiplanar osteotomy, the virtually measured ranges of motion as determined by bone-to-bone contact were 61 degrees for flexion, 57 degrees for abduction, and 66 degrees for internal rotation. The simulation of the uniplanar flexion osteotomy achieved a flexion of 63 degrees, an abduction of 36 degrees, and an internal rotation of 54 degrees. CONCLUSIONS: Apart from abduction, the improvement in the range of motion by a uniplanar flexion osteotomy is comparable with that of the multiplanar osteotomy. However, the improvement in flexion for the simulation of both techniques is not satisfactory with regard to the requirements of normal everyday life, in contrast to abduction and internal rotation. LEVEL OF EVIDENCE: Level III, Retrospective comparative study.
Resumo:
BACKGROUND Knee pain is associated with radiographic knee osteoarthritis, but the relationships between physical examination, pain and radiographic features are unclear. OBJECTIVE To examine whether deficits in knee extension or flexion were associated with radiographic severity and pain during clinical examination in persons with knee pain or radiographic features of osteoarthritis. DESIGN Cross-sectional data of the Somerset and Avon Survey of Health (SASH) cohort study. METHODS Participants with knee pain or radiographic features of osteoarthritis were included. We assessed the range of passive knee flexion and extension, pain on movement and Kellgren and Lawrence (K/L) grades. Odds ratios were calculated for the association between range of motion and pain as well as radiographic severity. RESULTS/FINDINGS Of 1117 participants with a clinical assessment, 805 participants and 1530 knees had complete data and were used for this analysis. Pain and radiographic changes were associated with limited range of motion. In knees with pain on passive movement, extension and flexion were reduced per one grade of K/L by -1.4° (95% CI -2.2 to -0.5) and -1.6° (95% CI -2.8 to -0.4), while in knees without pain the reduction was -0.3° (95% CI -0.6 to -0.1) (extension) and -1.1° (-1.8 to -0.3) (flexion). The interaction of pain with K/L was significant (p = 0.021) for extension but not for flexion (p = 0.333). CONCLUSIONS Pain during passive movement, which may be an indicator of reversible soft-tissue changes, e.g., reversible through physical therapy, is independently associated with reduced flexion and extension of the knee.
An examination chair to measure internal rotation of the hip in routine settings: a validation study
Resumo:
OBJECTIVE: To determine the performance of a newly developed examination chair as compared with the clinical standard of assessing internal rotation (IR) of the flexed hip with a goniometer.
METHODS: The examination chair allowed measurement of IR in a sitting position simultaneously in both hips, with hips and knees flexed 90 degrees, lower legs hanging unsupported and a standardized load of 5 kg applied to both ankles using a bilateral pulley system. Clinical assessment of IR was performed in supine position with hips and knees flexed 90 degrees using a goniometer. Within the framework of a population-based inception cohort study, we calculated inter-observer agreement in two samples of 84 and 64 consecutive, unselected young asymptomatic males using intra-class correlation coefficients (ICC) and determined the correlation between IR assessed with examination chair and clinical assessment.
RESULTS: Inter-observer agreement was excellent for the examination chair (ICC right hip, 0.92, 95% confidence interval [CI] 0.89-0.95; ICC left hip, 0.90, 95% CI 0.86-0.94), and considerably higher than that seen with clinical assessment (ICC right hip, 0.65, 95% CI 0.49-0.77; ICC left hip, 0.69, 95% CI 0.54-0.80, P for difference in ICC between examination chair and clinical assessment
Resumo:
OBJECTIVE: To analyze the biomechanical changes induced by partial lateral corpectomy (PLC) and a combination of PLC and hemilaminectomy in a T13-L3 spinal segment in nonchondrodystrophic dogs. STUDY DESIGN: In vitro biomechanical cadaveric study. SAMPLE POPULATION: T13-L3 spinal segments (n = 10) of nonchondrodystrophic dogs (weighing, 25-38 kg). METHODS: A computed tomography (CT) scan of each T13-L3 spinal segment was performed. A loading simulator for flexibility analysis was used to determine the range of motion (ROM) and neutral zone (NZ) during flexion/extension, lateral bending, and axial rotation. A servohydraulic testing machine was used to determine the changes in stiffness during compression, dorsoventral, and lateral shear. All spines were tested intact, after PLC in the left intervertebral space of L1-L2, and after a combination of PLC and hemilaminectomy. RESULTS: Statistically significant increases in ROM and NZ (P < .05) were detected during flexion/extension and lateral bending when PLC was performed. A significant increase in ROM (P < .001) was noted during axial rotation and flexion after PLC and hemilaminectomy. Stiffness decreased significantly during compression and dorsoventral shear after each procedure. Decreased stiffness during lateral shear was only significant after a combination of both procedures. CONCLUSION: PLC might lead to some spinal instability; these changes are enhanced when a hemilaminectomy is added.
Resumo:
A CT-based method ("HipMotion") for the noninvasive three-dimensional assessment of femoroacetabular impingement (FAI) was developed, validated, and applied in a clinical pilot study. The method allows for the anatomically based calculation of hip range of motion (ROM), the exact location of the impingement zone, and the simulation of quantified surgical maneuvers for FAI. The accuracy of HipMotion was 0.7 +/- 3.1 degrees in a plastic bone setup and -5.0 +/- 5.6 degrees in a cadaver setup. Reliability and reproducibility were excellent [intraclass correlation coefficient (ICC) > 0.87] for all measures except external rotation (ICC = 0.48). The normal ROM was determined from a cohort of 150 patients and was compared to 31 consecutive hips with FAI. Patients with FAI had a significantly decreased flexion, internal rotation, and abduction in comparison to normal hips (p < 0.001). Normal hip flexion and internal rotation are generally overestimated in a number of orthopedic textbooks. HipMotion is a useful tool for further assessment of impinging hips and for appropriate planning of the necessary amount of surgical intervention, which represents the basis for future computer-assisted treatment of FAI with less invasive surgical approaches, such as hip arthroscopy.