7 resultados para problem based learning
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The assumption that social skills are necessary ingredients of collaborative learning is well established but rarely empirically tested. In addition, most theories on collaborative learning focus on social skills only at the personal level, while the social skill configurations within a learning group might be of equal importance. Using the integrative framework, this study investigates which social skills at the personal level and at the group level are predictive of task-related e-mail communication, satisfaction with performance and perceived quality of collaboration. Data collection took place in a technology-enhanced long-term project-based learning setting for pre-service teachers. For data collection, two questionnaires were used, one at the beginning and one at the end of the learning cycle which lasted 3 months. During the project phase, the e-mail communication between group members was captured as well. The investigation of 60 project groups (N = 155 for the questionnaires; group size: two or three students) and 33 groups for the e-mail communication (N = 83) revealed that personal social skills played only a minor role compared to group level configurations of social skills in predicting satisfaction with performance, perceived quality of collaboration and communication behaviour. Members from groups that showed a high and/or homogeneous configuration of specific social skills (e.g., cooperation/compromising, leadership) usually were more satisfied and saw their group as more efficient than members from groups with a low and/or heterogeneous configuration of skills.
Resumo:
Learning by reinforcement is important in shaping animal behavior, and in particular in behavioral decision making. Such decision making is likely to involve the integration of many synaptic events in space and time. However, using a single reinforcement signal to modulate synaptic plasticity, as suggested in classical reinforcement learning algorithms, a twofold problem arises. Different synapses will have contributed differently to the behavioral decision, and even for one and the same synapse, releases at different times may have had different effects. Here we present a plasticity rule which solves this spatio-temporal credit assignment problem in a population of spiking neurons. The learning rule is spike-time dependent and maximizes the expected reward by following its stochastic gradient. Synaptic plasticity is modulated not only by the reward, but also by a population feedback signal. While this additional signal solves the spatial component of the problem, the temporal one is solved by means of synaptic eligibility traces. In contrast to temporal difference (TD) based approaches to reinforcement learning, our rule is explicit with regard to the assumed biophysical mechanisms. Neurotransmitter concentrations determine plasticity and learning occurs fully online. Further, it works even if the task to be learned is non-Markovian, i.e. when reinforcement is not determined by the current state of the system but may also depend on past events. The performance of the model is assessed by studying three non-Markovian tasks. In the first task, the reward is delayed beyond the last action with non-related stimuli and actions appearing in between. The second task involves an action sequence which is itself extended in time and reward is only delivered at the last action, as it is the case in any type of board-game. The third task is the inspection game that has been studied in neuroeconomics, where an inspector tries to prevent a worker from shirking. Applying our algorithm to this game yields a learning behavior which is consistent with behavioral data from humans and monkeys, revealing themselves properties of a mixed Nash equilibrium. The examples show that our neuronal implementation of reward based learning copes with delayed and stochastic reward delivery, and also with the learning of mixed strategies in two-opponent games.
Resumo:
n learning from trial and error, animals need to relate behavioral decisions to environmental reinforcement even though it may be difficult to assign credit to a particular decision when outcomes are uncertain or subject to delays. When considering the biophysical basis of learning, the credit-assignment problem is compounded because the behavioral decisions themselves result from the spatio-temporal aggregation of many synaptic releases. We present a model of plasticity induction for reinforcement learning in a population of leaky integrate and fire neurons which is based on a cascade of synaptic memory traces. Each synaptic cascade correlates presynaptic input first with postsynaptic events, next with the behavioral decisions and finally with external reinforcement. For operant conditioning, learning succeeds even when reinforcement is delivered with a delay so large that temporal contiguity between decision and pertinent reward is lost due to intervening decisions which are themselves subject to delayed reinforcement. This shows that the model provides a viable mechanism for temporal credit assignment. Further, learning speeds up with increasing population size, so the plasticity cascade simultaneously addresses the spatial problem of assigning credit to synapses in different population neurons. Simulations on other tasks, such as sequential decision making, serve to contrast the performance of the proposed scheme to that of temporal difference-based learning. We argue that, due to their comparative robustness, synaptic plasticity cascades are attractive basic models of reinforcement learning in the brain.
Resumo:
Social learning approaches have become a prominent focus in studies related to sustainable agriculture. In order to better understand the potential of social learning for more sustainable development, the present study assessed the processes, effects and facilitating elements of interaction related to social learning in the context of Swiss soil protection and the innovative ‘From Farmer - To Farmer’ project. The study reveals that social learning contributes to fundamental transformations of patterns of interactions. However, the study also demonstrates that a learning-oriented understanding of sustainable development implies including analysis of the institutional environments in which the organizations of the individual representatives of face-to-face-based social learning processes are operating. This has shown to be a decisive element when face-to-face-based learning processes of the organisations’ representatives are translated into organisational learning. Moreover, the study revealed that this was achieved not directly through formalisation of new lines of institutionalised cooperation but by establishing links in a ‘boundary space’ trying out new forms of collaboration, aiming at social learning and co-production of knowledge. It is argued that further research on social learning processes should give greater emphasis to this intermediary level of ‘boundary spaces’.
Resumo:
The increasing practice of offshore outsourcing software maintenance has posed the challenge of effectively transferring knowledge to individual software engineers of the vendor. In this theoretical paper, we discuss the implications of two learning theories, the model of work-based learning (MWBL) and cognitive load theory (CLT), for knowledge transfer during the transition phase. Taken together, the theories suggest that learning mechanisms need to be aligned with the type of knowledge (tacit versus explicit), task characteristics (complexity and recurrence), and the recipients’ expertise. The MWBL proposes that learning mechanisms need to include conceptual and practical activities based on the relative importance of explicit and tacit knowledge. CLT explains how effective portfolios of learning mechanisms change over time. While jobshadowing, completion tasks, and supportive information may prevail at the outset of transition, they may be replaced by the work on conventional tasks towards the end of transition.