8 resultados para polynomials

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neurally adjusted ventilatory assist (NAVA) delivers airway pressure (P(aw)) in proportion to the electrical activity of the diaphragm (EAdi) using an adjustable proportionality constant (NAVA level, cm·H(2)O/μV). During systematic increases in the NAVA level, feedback-controlled down-regulation of the EAdi results in a characteristic two-phased response in P(aw) and tidal volume (Vt). The transition from the 1st to the 2nd response phase allows identification of adequate unloading of the respiratory muscles with NAVA (NAVA(AL)). We aimed to develop and validate a mathematical algorithm to identify NAVA(AL). P(aw), Vt, and EAdi were recorded while systematically increasing the NAVA level in 19 adult patients. In a multistep approach, inspiratory P(aw) peaks were first identified by dividing the EAdi into inspiratory portions using Gaussian mixture modeling. Two polynomials were then fitted onto the curves of both P(aw) peaks and Vt. The beginning of the P(aw) and Vt plateaus, and thus NAVA(AL), was identified at the minimum of squared polynomial derivative and polynomial fitting errors. A graphical user interface was developed in the Matlab computing environment. Median NAVA(AL) visually estimated by 18 independent physicians was 2.7 (range 0.4 to 5.8) cm·H(2)O/μV and identified by our model was 2.6 (range 0.6 to 5.0) cm·H(2)O/μV. NAVA(AL) identified by our model was below the range of visually estimated NAVA(AL) in two instances and was above in one instance. We conclude that our model identifies NAVA(AL) in most instances with acceptable accuracy for application in clinical routine and research.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Custom modes at a wavelength of 1064 nm were generated with a deformable mirror. The required surface deformations of the adaptive mirror were calculated with the Collins integral written in a matrix formalism. The appropriate size and shape of the actuators as well as the needed stroke were determined to ensure that the surface of the controllable mirror matches the phase front of the custom modes. A semipassive bimorph adaptive mirror with five concentric ring-shaped actuators and one defocus actuator was manufactured and characterised. The surface deformation was modelled with the response functions of the adaptive mirror in terms of an expansion with Zernike polynomials. In the experiments the Nd:YAG laser crystal was quasi-CW pumped to avoid thermally induced distortions of the phase front. The adaptive mirror allows to switch between a super-Gaussian mode, a doughnut mode, a Hermite-Gaussian fundamental beam, multi-mode operation or no oscillation in real time during laser operation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The problem of re-sampling spatially distributed data organized into regular or irregular grids to finer or coarser resolution is a common task in data processing. This procedure is known as 'gridding' or 're-binning'. Depending on the quantity the data represents, the gridding-algorithm has to meet different requirements. For example, histogrammed physical quantities such as mass or energy have to be re-binned in order to conserve the overall integral. Moreover, if the quantity is positive definite, negative sampling values should be avoided. The gridding process requires a re-distribution of the original data set to a user-requested grid according to a distribution function. The distribution function can be determined on the basis of the given data by interpolation methods. In general, accurate interpolation with respect to multiple boundary conditions of heavily fluctuating data requires polynomial interpolation functions of second or even higher order. However, this may result in unrealistic deviations (overshoots or undershoots) of the interpolation function from the data. Accordingly, the re-sampled data may overestimate or underestimate the given data by a significant amount. The gridding-algorithm presented in this work was developed in order to overcome these problems. Instead of a straightforward interpolation of the given data using high-order polynomials, a parametrized Hermitian interpolation curve was used to approximate the integrated data set. A single parameter is determined by which the user can control the behavior of the interpolation function, i.e. the amount of overshoot and undershoot. Furthermore, it is shown how the algorithm can be extended to multidimensional grids. The algorithm was compared to commonly used gridding-algorithms using linear and cubic interpolation functions. It is shown that such interpolation functions may overestimate or underestimate the source data by about 10-20%, while the new algorithm can be tuned to significantly reduce these interpolation errors. The accuracy of the new algorithm was tested on a series of x-ray CT-images (head and neck, lung, pelvis). The new algorithm significantly improves the accuracy of the sampled images in terms of the mean square error and a quality index introduced by Wang and Bovik (2002 IEEE Signal Process. Lett. 9 81-4).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A characterization is provided for the von Mises–Fisher random variable, in terms of first exit point from the unit hypersphere of the drifted Wiener process. Laplace transform formulae for the first exit time from the unit hypersphere of the drifted Wiener process are provided. Post representations in terms of Bell polynomials are provided for the densities of the first exit times from the circle and from the sphere.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this article we propose an exact efficient simulation algorithm for the generalized von Mises circular distribution of order two. It is an acceptance-rejection algorithm with a piecewise linear envelope based on the local extrema and the inflexion points of the generalized von Mises density of order two. We show that these points can be obtained from the roots of polynomials and degrees four and eight, which can be easily obtained by the methods of Ferrari and Weierstrass. A comparative study with the von Neumann acceptance-rejection, with the ratio-of-uniforms and with a Markov chain Monte Carlo algorithms shows that this new method is generally the most efficient.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We introduce the block numerical range Wn(L) of an operator function L with respect to a decomposition H = H1⊕. . .⊕Hn of the underlying Hilbert space. Our main results include the spectral inclusion property and estimates of the norm of the resolvent for analytic L . They generalise, and improve, the corresponding results for the numerical range (which is the case n = 1) since the block numerical range is contained in, and may be much smaller than, the usual numerical range. We show that refinements of the decomposition entail inclusions between the corresponding block numerical ranges and that the block numerical range of the operator matrix function L contains those of its principal subminors. For the special case of operator polynomials, we investigate the boundedness of Wn(L) and we prove a Perron-Frobenius type result for the block numerical radius of monic operator polynomials with coefficients that are positive in Hilbert lattice sense.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Steiner’s tube formula states that the volume of an ϵ-neighborhood of a smooth regular domain in Rn is a polynomial of degree n in the variable ϵ whose coefficients are curvature integrals (also called quermassintegrals). We prove a similar result in the sub-Riemannian setting of the first Heisenberg group. In contrast to the Euclidean setting, we find that the volume of an ϵ-neighborhood with respect to the Heisenberg metric is an analytic function of ϵ that is generally not a polynomial. The coefficients of the series expansion can be explicitly written in terms of integrals of iteratively defined canonical polynomials of just five curvature terms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

cprplot2 is a variation of official Stata's cprplot and is used for graphing component-plus-residual plots (a.k.a. partial residual plots). Additional features (compared to cprplot): (1) cprplot2 can handle variables that enter the model repeatedly via different transformations (for example, polynomials). (2) cprplot2 can display component-plus-residual plots using the original units for transformed variables in the model. (3) A wrapper is provided to quickly display several component-plus-residual plots in a single image.