14 resultados para plasmid DNA
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
BACKGROUND: Existing methods of non-viral airway gene transfer suffer from low levels of efficiency. Electroporation has been used to enhance gene transfer in a range of tissues. Here we assess the usefulness of electroporation for enhancing gene transfer in the lungs of mice and sheep. METHODS: Naked plasmid DNA (pDNA) expressing either luciferase or green fluorescent protein (GFP) was delivered to mouse lungs by instillation. Following surgical visualisation, the lungs were directly electroporated and the level and duration of luciferase activity was assessed and cell types that were positive for GFP were identified in lung cryosections. Naked pDNA was nebulised to the sheep lung and electrodes attached to the tip of a bronchoscope were used to electroporate airway segment bifurcations, Luciferase activity was assessed in electroporated and control non-electroporated regions, after 24 h. RESULTS: Following delivery of naked pDNA to the mouse lung, electroporation resulted in up to 400-fold higher luciferase activity than naked pDNA alone when luciferase was under the control of a cytomegalovirus (CMV) promoter. Following delivery of a plasmid containing the human polyubiquitin C (UbC) promoter, electroporation resulted in elevated luciferase activity for at least 28 days. Visualisation of GFP indicated that electroporation resulted in increased GFP detection compared with non-electroporated controls. In the sheep lung electroporation of defined sites in the airways resulted in luciferase activity 100-fold greater than naked pDNA alone. CONCLUSIONS: These results indicate that electroporation can be used to enhance gene transfer in the lungs of mice and sheep without compromising the duration of expression.
Resumo:
NV1FGF is an expression plasmid encoding sp.FGF-1(21-154) currently under investigation for therapeutic angiogenesis in clinical trials. NV1FGF plasmid distribution and transgene expression following intramuscular (IM) injection in patients is unknown. The study involved six patients with chronic critical limb ischemia (CLI) planned to undergo amputation. A total dose of 0.5, 2, or 4 mg NV1FGF was administered as eight IM injections (0.006, 0.25, or 0.5 mg per injection) 3-5 days before amputation. Injected sites (30 cm(3)) were divided into equally sized smaller pieces to assess spatial distribution of NV1FGF sequences (PCR), NV1FGF mRNA (reverse transcriptase-PCR), and fibroblast growth factor-1 (FGF-1)-expressing cells (immunohistochemistry). Data indicated gene expression at all doses. The distribution area was within 5-12 cm for NV1FGF sequences containing the expression cassette, up to 5 cm for NV1FGF mRNA, and up to 3 cm for FGF-1-expressing myofibers. All FGF receptors were detected indicating robust potential for bioactivity after NV1FGF gene transfer. Circulating levels of NV1FGF sequences were shown to decrease within days after injection. Data support demonstration of plasmid-mediated gene transfer and expression in muscles from patients with CLI. FGF-1 expression was shown to be limited to injection sites, which supports the concept of multiple-site injection for therapeutic use.
Resumo:
Bipolar elongation of filaments of the bacterial actin homolog ParM drives movement of newly replicated plasmid DNA to opposite poles of a bacterial cell. We used a combination of vitreous sectioning and electron cryotomography to study this DNA partitioning system directly in native, frozen cells. The diffraction patterns from overexpressed ParM bundles in electron cryotomographic reconstructions were used to unambiguously identify ParM filaments in Escherichia coli cells. Using a low-copy number plasmid encoding components required for partitioning, we observed small bundles of three to five intracellular ParM filaments that were situated close to the edge of the nucleoid. We propose that this may indicate the capture of plasmid DNA within the periphery of this loosely defined, chromosome-containing region.
Resumo:
Gene therapy may represent a promising alternative strategy for cardiac muscle regeneration. In vivo electroporation, a physical method of gene transfer, has recently evolved as an efficient method for gene transfer. In the current study, we investigated the efficiency and safety of a protocol involving in vivo electroporation for gene transfer to the beating heart. Adult male rats were anesthetised and the heart exposed through a left thoracotomy. Naked plasmid DNA was injected retrograde into the transiently occluded coronary sinus before the electric pulses were applied. Animals were sacrificed at specific time points and gene expression was detected. Results were compared to the group of animals where no electric pulses were applied. No post-procedure arrhythmia was observed. Left ventricular function was temporarily altered only in the group were high pulses were applied; CK-MB (Creatine kinase) and TNT (Troponin T) were also altered only in this group. Histology showed no signs of toxicity. Gene expression was highest at day one. Our results provide evidence that in vivo electroporation with an optimized protocol is a safe and effective tool for nonviral gene delivery to the beating heart. This method may be promising for clinical settings especially for perioperative gene delivery.
Resumo:
Patients with critical limb ischaemia (CLI) unsuitable for revascularisation have a high rate of amputation and mortality (30% and 25% at 1 year, respectively). Localised gene therapy using plasmid DNA encoding acidic fibroblast growth factor (NV1FGF, riferminogene pecaplasmid) has showed an increased amputation-free survival in a phase II trial. This article provides the rationale, design and baseline characteristics of CLI patients enrolled in the pivotal phase III trial (EFC6145/TAMARIS).
In vivo electroporation and ubiquitin promoter--a protocol for sustained gene expression in the lung
Resumo:
BACKGROUND: Gene therapy applications require safe and efficient methods for gene transfer. Present methods are restricted by low efficiency and short duration of transgene expression. In vivo electroporation, a physical method of gene transfer, has evolved as an efficient method in recent years. We present a protocol involving electroporation combined with a long-acting promoter system for gene transfer to the lung. METHODS: The study was designed to evaluate electroporation-mediated gene transfer to the lung and to analyze a promoter system that allows prolonged transgene expression. A volume of 250 microl of purified plasmid DNA suspended in water was instilled into the left lung of anesthetized rats, followed by left thoracotomy and electroporation of the exposed left lung. Plasmids pCiKlux and pUblux expressing luciferase under the control of the cytomegalovirus immediate-early promoter/enhancer (CMV-IEPE) or human polyubiquitin c (Ubc) promoter were used. Electroporation conditions were optimized with four pulses (200 V/cm, 20 ms at 1 Hz) using flat plate electrodes. The animals were sacrificed at different time points up to day 40, after gene transfer. Gene expression was detected and quantified by bioluminescent reporter imaging (BLI) and relative light units per milligram of protein (RLU/mg) was measured by luminometer for p.Pyralis luciferase and immunohistochemistry, using an anti-luciferase antibody. RESULTS: Gene expression with the CMV-IEPE promoter was highest 24 h after gene transfer (2932+/-249.4 relative light units (RLU)/mg of total lung protein) and returned to baseline by day 3 (382+/-318 RLU/mg of total lung protein); at day 5 no expression was detected, whereas gene expression under the Ubc promoter was detected up to day 40 (1989+/-710 RLU/mg of total lung protein) with a peak at day 20 (2821+/-2092 RLU/mg of total lung protein). Arterial blood gas (PaO2), histological assessment and cytokine measurements showed no significant toxicity neither at day 1 nor at day 40. CONCLUSIONS: These results provide evidence that in vivo electroporation is a safe and effective tool for non-viral gene delivery to the lungs. If this method is used in combination with a long-acting promoter system, sustained transgene expression can be achieved.
Resumo:
OBJECTIVES: Human interleukin 10 (hIL-10) may reduce acute rejection after organ transplantation. Our previous data shows that electroporation-mediated transfer of plasmid DNA to peripheral muscle enhances gene transduction dramatically. This study was designed to investigate the effect of electroporation-mediated overexpression of hIL-10 on acute rejection of cardiac allografts in the rat. METHODS: The study was designed to evaluate the effect of hIL-10 gene transfer on (a) early rejection pattern and (b) graft survival. Gene transfer was achieved by intramuscular (i.m.) injection into the tibialis anterior muscle of Fischer (F344) male recipients followed by electroporation 24 h prior to transplantation. Heterotopic cardiac transplantation was performed from male Brown Norway rat to F344. Four groups were studied (n = 6). Treated animals in groups B1 and B2 received 2.5 microg of pCIK hIL-10 and control animals in groups A1 and A2 distilled water. Graft function was assessed by daily palpation. Animals from group A1 were sacrificed at the cessation of the heart beat of the graft and those in group B1 were sacrificed at day 7; blood was taken for ELISA measurement of hIL-10 and tissue for myeloperoxidase (MPO) measurement and histological assessment. To evaluate graft survival, groups A2 and B2 were sacrificed at cessation of the heart beat of the graft. RESULTS: Histological examination revealed severe rejection (IIIB-IV) in group A1 in contrast to low to moderate rejection (IA-IIIA) in group B1 (p = 0.02). MPO activity was significantly lower in group B1 compared to group A1 (18 +/- 7 vs. 32 +/- 14 mU/mg protein, p = 0.05). Serum hIL-10 levels were 46 +/- 13 pg/ml in group B1 vs. 0 pg/ml in group A1. At day 7 all heart allografts in the treated groups B1 and B2 were beating, whereas they stopped beating at 5 +/- 2 days in groups A1 and A2 vs. 14 +/- 2 days in group B2 (p = 0.0012). CONCLUSIONS: Electroporation-mediated intramuscular overexpression of hIL-10 reduces acute rejection and improves survival of heterotopic heart allografts in rats. This study demonstrates that peripheral overexpression of specific genes in skeletal muscle may reduce acute rejection after whole organ transplantation.
Resumo:
The human respiratory tract pathogen Moraxella catarrhalis is a naturally competent microorganism. However, electrotransformation has long been used to introduce foreign DNA into this organism. This study demonstrated that electrotransformants obtained with linear or circular nonreplicating plasmid DNA originated exclusively from natural transformation processes taking place during the recovery phase after the application of current. Only replicating plasmid DNA could be introduced into M. catarrhalis by electrotransformation, in a type IV pilus-independent manner. Electrotransformation with homologous genomic DNA indicated that restriction of double-stranded DNA was independent of type III restriction-methylation systems. Nontransformability of M. catarrhalis by electrotransformation was observed using double- as well as single-stranded DNA. In addition, the study showed that natural competence is a very constant feature of M. catarrhalis.
Resumo:
Gene transfer using electroporation is an essential method for the study of developmental biology, especially to understand the internal control of degeneration and apoptosis of the muscle cells that occurs earlier and quicker than the usual degeneration process occurring by aging. Such experimental studies may have a role in developing new strategies for treating patients suffering from inherited primary myopathies such as Duchenne muscular dystrophy (DMD). The present study was designed to evaluate the feasibility of electroporation mediated transfer of reporter genes to the diaphragm in vivo. This is the first report of gene transfer of naked plasmid DNA into the diaphragm muscle in vivo using electroporation. Our results showed that in vivo gene transfer of naked plasmid DNA into the diaphragm muscle using electroporation is feasible.
Resumo:
The complete 50,237-bp DNA sequence of the conjugative and mobilizing multiresistance plasmid pRE25 from Enterococcus faecalis RE25 was determined. The plasmid had 58 putative open reading frames, 5 of which encode resistance to 12 antimicrobials. Chloramphenicol acetyltransferase and the 23S RNA methylase are identical to gene products of the broad-host-range plasmid pIP501 from Streptococcus agalactiae. In addition, a 30.5-kb segment is almost identical to pIP501. Genes encoding an aminoglycoside 6-adenylyltransferase, a streptothricin acetyltransferase, and an aminoglycoside phosphotransferase are arranged in tandem on a 7.4-kb fragment as previously reported in Tn5405 from Staphylococcus aureus and in pJH1 from E. faecalis. One interrupted and five complete IS elements as well as three replication genes were also identified. pRE25 was transferred by conjugation to E. faecalis, Listeria innocua, and Lactococcus lactis by means of a transfer region that appears similar to that of pIP501. It is concluded that pRE25 may contribute to the further spread of antibiotic-resistant microorganisms via food into the human community.
Resumo:
We evaluated the pet food contained in thirty packages as potential origin of extended-spectrum cephalosporin-resistant Gram-negative organisms and β-lactamase genes (bla). Alive bacteria were not detected by selective culture. However, PCR investigations on food DNA extracts indicated that samples harbored blaCTX-M-15 (53.3%), blaCMY-4 (20%), and blaVEB-4-like (6.7%). Particularly worrisome was the presence of blaOXA-48-like carbapenemases (13.3%). Original pet food ingredients and/or the production process were highly contaminated with bacteria carrying clinically relevant acquired bla genes.
Resumo:
Serial quantification of BCR-ABL1 mRNA is an important therapeutic indicator in chronic myeloid leukaemia, but there is a substantial variation in results reported by different laboratories. To improve comparability, an internationally accepted plasmid certified reference material (CRM) was developed according to ISO Guide 34:2009. Fragments of BCR-ABL1 (e14a2 mRNA fusion), BCR and GUSB transcripts were amplified and cloned into pUC18 to yield plasmid pIRMM0099. Six different linearised plasmid solutions were produced with the following copy number concentrations, assigned by digital PCR, and expanded uncertainties: 1.08±0.13 × 10(6), 1.08±0.11 × 10(5), 1.03±0.10 × 10(4), 1.02±0.09 × 10(3), 1.04±0.10 × 10(2) and 10.0±1.5 copies/μl. The certification of the material for the number of specific DNA fragments per plasmid, copy number concentration of the plasmid solutions and the assessment of inter-unit heterogeneity and stability were performed according to ISO Guide 35:2006. Two suitability studies performed by 63 BCR-ABL1 testing laboratories demonstrated that this set of 6 plasmid CRMs can help to standardise a number of measured transcripts of e14a2 BCR-ABL1 and three control genes (ABL1, BCR and GUSB). The set of six plasmid CRMs is distributed worldwide by the Institute for Reference Materials and Measurements (Belgium) and its authorised distributors (https://ec.europa.eu/jrc/en/reference-materials/catalogue/; CRM code ERM-AD623a-f).
Resumo:
Fasciola hepatica, also called the large liver fluke, is a trematode which can infect most mammals. Monitoring the infection rate of snails, which function as intermediate hosts and harbour larval stages of F. hepatica, is an important component of epidemiological studies on fascioliasis. For this purpose, DNA probes were generated which can be used for the detection of F. hepatica larvae in snails. Four highly repetitive DNA fragments were cloned in a plasmid vector and tested by Southern blot hybridization to the DNA of various trematodes for specificity and sensitivity. The probes Fhr-I, Fhr-II and Fhr-III hybridized only to F. hepatica DNA. Fhr-IV contained ribosomal RNA gene sequences and cross-hybridize with the DNA from various other trematode species. Squash blot analysis showed that the different probes were able to detect the parasite larvae in trematode-infected snails even as isolated single larvae. No signals were obtained in squash blots of uninfected snails. Probes Fhr-I, Fhr-II and Fhr-III are thus useful specific tools for studying the epidemiology of fascioliasis. The probe Fhr-IV, because of its broader spectrum, can be used to detect the larvae of a wide range of trematode species of waterbirds, which are the causative agents of swimmer's itch.
Resumo:
Repetitive DNA sequences present in the genome of Dicrocoelium dendriticum were identified by hybridization of genomic DNA that had been digested with different restriction enzymes with 32P-labeled genomic D. dendriticum DNA. DNA fragments containing repetitive sequences were isolated from PstI-digested D. dendriticum DNA and were subcloned into a plasmid vector. Plasmids containing repetitive sequences were identified by colony hybridization. One of these plasmids, designated Ddr-IV, was isolated and used as a probe in further studies. Ddr-IV is specific for D. dendriticum since it does not hybridize to DNA isolated from other trematodes. In addition, Ddr-IV was capable of detecting D. dendriticum metacercariae in ants (Formica cunicularia, F. rufibarbis, and Lasius sp.), which act as second intermediate hosts in the parasite's life cycle. Since metacercariae constitute the infectious stage of the parasite for grazing animals, Ddr-IV will provide a useful tool for epidemiology studies of dicrocoeliosis.