175 resultados para parasite antigen

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Equine recurrent airway obstruction (RAO) is an inflammatory, obstructive airway disease induced by exposure of susceptible horses to inhaled organic dust particles. The immunological process underlying RAO is still unclear. Previous studies have shown that RAO is linked to the Interleukin-4 receptor (IL-4R) gene in one Warmblood family (F1), but not in another (F2). It has also been shown that in F1, but not in F2, RAO is associated with resistance against parasites, suggesting that this association may have an immuno-genetic basis. Therefore, we hypothesized that the T helper (h)1/Th2/regulatory (Treg) cytokine profiles of RAO-associated antigen- and parasite-antigen-stimulated peripheral blood mononuclear cells (PBMC) differ between RAO-affected and healthy horses depending on their genetic background. In our study, PBMC from 17 RAO-affected and 14 healthy control horses of F1 and F2 were stimulated for 24h with antigens relevant to RAO [hay dust extract (HDE), Aspergillus fumigatus extract (AFE) and lipopolysaccharids (LPS)]; cyathostomin extract (CE) and recombinant cyathostomin antigen (RCA) or with concanavalin A (ConA). Total mRNA levels of IL-4, IL-4R, IL-13, interferon (INF)-γ and IL-10 were examined by qRT-PCR. Stimulation with either HDE or RCA resulted in significant differences in IL-4R mRNA levels between RAO-affected and control horses in F1, but not in F2. For IL-10 mRNA expression, a significant difference between RAO-affected and control horses in F1 but not in F2 was observed only following stimulation with HDE. In contrast to HDE, stimulation with CE resulted in a significant difference of IL-10 mRNA expression level between RAO-affected horses of F2 and healthy horses of F1. No significant differences were detected upon stimulation with any of the other challenge agents. These findings indicate that the immunological response, specifically IL-4R expression, in response to hay dust and cyathostomin antigens, differs between RAO-affected and healthy horses depending on their genetic background. This study shows that analysis of PBMC reveals systemic changes associated with RAO and helps to elucidate immunological pathways involved in this disease.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The T-cell-mediated immune response exhibits a crucial function in the control of the intrahepatic proliferation of Echinococcus multilocularis larvae in mice and humans, both being natural intermediate hosts of the parasite. Antigen B (AgB), a metabolized Echinococcus spp. lipoprotein, contributes to the modulation of the T-cell immune response, and distinct sites of the corresponding AgB1, AgB3 and AgB4 genes were shown to be under positive selection pressure. Since several AgB gene variants are present in a single Echinococcus metacestode, we used secondary E. multilocularis infections in BALB/c and in athymic nude mice (devoid of T-cell responses) to analyze the effect of the cellular immune response on the expression and diversity of EmAgB1-EmAgB4 genes. We demonstrated hereby that EmAgB transcripts were less abundant in nude mice during the early phase of infection (at one month post-infection), and that EmAgB2 is simultaneously down-regulated when compared to the other three genes. A negative relationship exists between the level of transcription and diversity of EmAgB genes. Moreover, no excess of non-synonymous substitutions was found among the distinct EmAgB alleles from a single host. Together, these results pointed to the effect of purifying selection, which seemed to eliminate the detrimental AgB variants generated during the development of the metacestode within the peritoneal cavity of its intermediate host.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recurrent airway obstruction (RAO) is a common and potentially debilitating lower airway disease in horses, which shares many similarities with human asthma. In susceptible horses RAO exacerbation is caused by environmental allergens and irritants present in hay dust. The objective of this study was the identification of genes and pathways involved in the pathology of RAO by global transcriptome analyses in stimulated peripheral blood mononuclear cells (PBMCs). We performed RNA-seq on PBMCs derived from 40 RAO affected and 45 control horses belonging to three cohorts of Warmblood horses: two half-sib families and one group of unrelated horses. PBMCs were stimulated with hay dust extract, lipopolysaccharides, a recombinant parasite antigen, or left unstimulated. The total dataset consisted of 561 individual samples. We detected significant differences in the expression profiles between RAO and control horses. Differential expression (DE) was most marked upon stimulation with hay dust extract. An important novel finding was a strong upregulation of CXCL13 together with many genes involved in cell cycle regulation in stimulated samples from RAO affected horses, in addition to changes in the expression of several HIF-1 transcription factor target genes. The RAO condition alters systemic changes observed as differential expression profiles of PBMCs. Those changes also depended on the cohort and stimulation of the samples and were dominated by genes involved in immune cell trafficking, development, and cell cycle regulation. Our findings indicate an important role of CXCL13, likely macrophage or Th17 derived, and the cell cycle regulator CDC20 in the immune response in RAO.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In order to achieve host cell entry, the apicomplexan parasite Neospora caninum relies on the contents of distinct organelles, named micronemes, rhoptries and dense granules, which are secreted at defined timepoints during and after host cell entry. It was shown previously that a vaccine composed of a mixture of three recombinant antigens, corresponding to the two microneme antigens NcMIC1 and NcMIC3 and the rhoptry protein NcROP2, prevented disease and limited cerebral infection and transplacental transmission in mice. In this study, we selected predicted immunogenic domains of each of these proteins and created four different chimeric antigens, with the respective domains incorporated into these chimers in different orders. Following vaccination, mice were challenged intraperitoneally with 2 × 10(6)N. caninum tachzyoites and were then carefully monitored for clinical symptoms during 4 weeks post-infection. Of the four chimeric antigens, only recNcMIC3-1-R provided complete protection against disease with 100% survivors, compared to 40-80% of survivors in the other groups. Serology did not show any clear differences in total IgG, IgG1 and IgG2a levels between the different treatment groups. Vaccination with all four chimeric variants generated an IL-4 biased cytokine expression, which then shifted to an IFN-γ-dominated response following experimental infection. Sera of recNcMIC3-1-R vaccinated mice reacted with each individual recombinant antigen, as well as with three distinct bands in Neospora extracts with similar Mr as NcMIC1, NcMIC3 and NcROP2, and exhibited distinct apical labeling in tachyzoites. These results suggest that recNcMIC3-1-R is an interesting chimeric vaccine candidate and should be followed up in subsequent studies in a fetal infection model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Echinococcosis is a worldwide zoonotic parasitic disease of humans and various herbivorous domestic animals (intermediate hosts) transmitted by the contact with wild and domestic carnivores (definitive hosts), mainly foxes and dogs. Recently, a vaccine was developed showing high levels of protection against one parasite haplotype (G1) of Echinococcus granulosus, and its potential efficacy against distinct parasite variants or species is still unclear. Interestingly, the EG95 vaccine antigen is a secreted glycosylphosphatydilinositol (GPI)-anchored protein containing a fibronectin type III domain, which is ubiquitous in modular proteins involved in cell adhesion. EG95 is highly expressed in oncospheres, the parasite life cycle stage which actively invades the intermediate hosts. After amplifying and sequencing the complete CDS of 57 Echinococcus isolates belonging to 7 distinct species, we uncovered a large amount of genetic variability, which may influence protein folding. Two positively selected sites are outside the vaccine epitopes, but are predicted to alter protein conformation. Moreover, phylogenetic analyses indicate that EG95 isoform evolution is convergent with regard to the number of beta-sheets and alpha-helices. We conclude that having a variety of EG95 isoforms is adaptive for Echinococcus parasites, in terms of their ability to invade different hosts, and we propose that a mixture of isoforms could possibly maximize vaccine efficacy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A polypeptide (Em2a) purified by affinity chromatography from the Echinococcus multilocularis metacestode showed a high degree of purity as assayed by SDS-PAGE and analytical isoelectrical focusing. A minor contamination with host albumin was revealed. Estimation of relative mol. mass gave a value of 54,000. The isoelectric point was found to be 4.8. Antigenic activity of the polypeptide was demonstrated by immunoprecipitation and western blotting. In these assays the protein was recognized only by homologous sera from patients infected with larval E. multilocularis. This antigen (Em2a) did not react in the ELISA with sera from patients infected with heterologous helminths; these sera were highly cross-reacting with antigen from E. granulosus hydatid fluid. Seventy-three (94%) from 78 investigated patients (alveolar echinococcosis) showed a seropositive reaction with the polypeptide Em2a.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Alveolar echinococcosis (AE) is caused by infection with the larval stage of the tapeworm Echinococcus multilocularis. An increasing understanding of immunological events that account for the metacestode survival in human and murine AE infection prompted us to undertake explorative experiments tackling the potential of novel preventive and/or immunotherapeutic measures. In this study, the immunoprotective and immunotherapeutic ability of recombinant EmP29 antigen (rEmP29) was assessed in mice that were intraperitoneally infected with E. multilocularis metacestodes. For vaccination, three intraperitoneal injections with 20μg rEmP29 emulsified in saponin adjuvants were applied over 6 weeks. 2 weeks after the last boost, mice were infected, and at 90 days post-infection, rEmP29-vaccinated mice exhibited a median parasite weight that was reduced by 75% and 59% when compared to NaCl- or saponin-treated control mice, respectively. For immunotherapeutical application, the rEmP29 (20μg) vaccine was administered to experimentally infected mice, starting at 1 month post-infection, three times with 2 weeks intervals. Mice undergoing rEmP29 immunotherapy exhibited a median parasite load that was reduced by 53% and 49% when compared to NaCl- and saponin-treated control mice, respectively. Upon analysis of spleen cells, both, vaccination and treatment with rEmP29, resulted in low ratios of Th2/Th1 (IL-4/IFN-γ) cytokine mRNA and low levels of mRNA coding for IL-10 and IL-2. These results suggest that reduction of the immunosuppressive environment takes place in vaccinated as well as immunotreated mice, and a shift towards a Th1 type of immune response may be responsible for the observed increased restriction of parasite growth. The present study provides the first evidence that active immunotherapy may present a sustainable route for the control of AE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The p67 sporozoite antigen of Theileria parva has been fused to the C-terminal secretion signal of Escherichia coli hemolysin and expressed in secreted form by attenuated Salmonella dublin aroA strain SL5631. The recombinant p67 antigen was detected in the supernatant of transformed bacterial cultures. Immunization trials in cattle revealed that SL5631 secreting the antigen provoked a 10-fold-higher antibody response to p67 than recombinant SL5631 expressing but not secreting p67. Immunized calves were challenged with a 80% lethal dose of T. parva sporozoites and monitored for the development of infection. Two of three calves immunized intramuscularly with the p67-secreting SL5631 strain were found to be protected, whereas only one of three animals immunized with the nonsecreting p67-expressing SL5631 strain was protected. This is the first demonstration that complete eukaryotic antigens fused to the C-terminal portion of E. coli hemolysin can be exported from attenuated Salmonella strains and that such exported antigens can protect cattle against subsequent parasite challenge.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transmission of the protozoan parasite Giardia lamblia from one to another host individuum occurs through peroral ingestion of cysts which, following excystation in the small intestine, release two trophozoites each. Many studies have focused on the major surface antigen, VSP (for variant surface protein), which is responsible for the antigenic variability of the parasite. By using trophozoites of G. lamblia clone GS/M-83-H7 (expressing VSP H7) and the neonatal mouse model for experimental infections, we quantitatively assessed the process of antigenic variation of the parasite on the transcriptional level. In the present study, variant-specific regions identified on different GS/M-83-H7 vsp sequences served as targets for quantitative reverse transcription-PCR to monitor alterations in vsp mRNA levels during infection. Respective results demonstrated that antigenic switching of both the duodenal trophozoite and the cecal cyst populations was associated with a massive reduction in vsp H7 mRNA levels but not with a simultaneous increase in transcripts of any of the subvariant vsp genes analyzed. Most importantly, we also explored giardial variant-type formation and vsp mRNA levels after infection of mice with cysts. This infection mode led to an antigenic reset of the parasite in that a VSP H7-negative inoculum "converted" into a population of intestinal trophozoites that essentially consisted of the original VSP H7 type. This antigenic reset appears to be associated with excystation rather than with a selective process which favors expansion of a residual population of VSP H7 types within the antigenically diversified cyst inoculum. Based on these findings, the VSP H7 type has to be regarded as a predominant variant of G. lamblia clone GS/M-83-H7 which (re-)emerges during early-stage infection and may contribute to an optimal establishment of the parasite within the intestine of the experimental murine host.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Large numbers and functionally competent T cells are required to protect from diseases for which antibody-based vaccines have consistently failed (1), which is the case for many chronic viral infections and solid tumors. Therefore, therapeutic vaccines aim at the induction of strong antigen-specific T-cell responses. Novel adjuvants have considerably improved the capacity of synthetic vaccines to activate T cells, but more research is necessary to identify optimal compositions of potent vaccine formulations. Consequently, there is a great need to develop accurate methods for the efficient identification of antigen-specific T cells and the assessment of their functional characteristics directly ex vivo. In this regard, hundreds of clinical vaccination trials have been implemented during the last 15 years, and monitoring techniques become more and more standardized.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RhoH is a member of the Rho (ras homologous) GTPase family, yet it lacks GTPase activity and thus remains in its active conformation. Unlike other Rho GTPases, the RhoH gene transcript is restricted to hematopoietic cells and RhoH was shown to be required for adequate T-cell activation through the TCR. Here, we demonstrate that both blood T and B cells, but not neutrophils or monocytes, express RhoH protein under physiological conditions. Upon TCR complex activation, RhoH was degraded in lysosomes of primary and Jurkat T cells. Pharmacologic activation of T cells distal to the TCR complex had no effect on RhoH protein levels suggesting that early events during T-cell activation are required for RhoH protein degradation. In contrast to T cells, activation of the BCR in blood B cells was not associated with changes in RhoH levels. These data suggest that RhoH function might be regulated by lysosomal degradation of RhoH protein following TCR complex but not BCR activation. This newly discovered regulatory pathway of RhoH expression might limit TCR signaling and subsequent T-cell activation upon Ag contact.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Choline positron emission tomography (PET)/computed tomography (CT) is a currently used diagnostic tool in restaging prostate cancer (PCa) patients with increasing prostate-specific antigen (PSA) after either radical prostatectomy (RP) or external-beam radiation therapy (EBRT). However, no final recommendations have been made on the use of this modality for patient management.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recognition of drugs by immune cells is usually explained by the hapten model, which states that endogenous metabolites bind irreversibly to protein to stimulate immune cells. Synthetic metabolites interact directly with protein-generating antigenic determinants for T cells; however, experimental evidence relating intracellular metabolism in immune cells and the generation of physiologically relevant Ags to functional immune responses is lacking. The aim of this study was to develop an integrated approach using animal and human experimental systems to characterize sulfamethoxazole (SMX) metabolism-derived antigenic protein adduct formation in immune cells and define the relationship among adduct formation, cell death, costimulatory signaling, and stimulation of a T cell response. Formation of SMX-derived adducts in APCs was dose and time dependent, detectable at nontoxic concentrations, and dependent on drug-metabolizing enzyme activity. Adduct formation above a threshold induced necrotic cell death, dendritic cell costimulatory molecule expression, and cytokine secretion. APCs cultured with SMX for 16 h, the time needed for drug metabolism, stimulated T cells from sensitized mice and lymphocytes and T cell clones from allergic patients. Enzyme inhibition decreased SMX-derived protein adduct formation and the T cell response. Dendritic cells cultured with SMX and adoptively transferred to recipient mice initiated an immune response; however, T cells were stimulated with adducts derived from SMX metabolism in APCs, not the parent drug. This study shows that APCs metabolize SMX; subsequent protein binding generates a functional T cell Ag. Adduct formation above a threshold stimulates cell death, which provides a maturation signal for dendritic cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Paraneoplastic pemphigus (PNP) is a devastating autoimmune blistering disease, involving mucocutaneous and internal organs, and associated with underlying neoplasms. PNP is characterized by the production of autoantibodies targeting proteins of the plakin and cadherin families involved in maintenance of cell architecture and tissue cohesion. Nevertheless, the identity of an antigen of Mr 170,000 (p170), thought to be critical in PNP pathogenesis, has remained unknown.