24 resultados para non-relativistic limit
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Recently the issue of radiative corrections to leptogenesis has been raised. Considering the "strong washout" regime, in which OPE-techniques permit to streamline the setup, we report the thermal self-energy matrix of heavy right-handed neutrinos at NLO (resummed 2-loop level) in Standard Model couplings. The renormalized expression describes flavour transitions and "inclusive" decays of chemically decoupled right-handed neutrinos. Although CP-violation is not addressed, the result may find use in existing leptogenesis frameworks.
Resumo:
We determine the mass of the bottom quark from high moments of the bbproduction cross section in e+e−annihilation, which are dominated by the threshold region. On the theory side next-to-next-to-next-to-leading order (NNNLO) calculations both for the resonances and the continuum cross section are used for the first time. We find mPSb(2GeV) =4.532+0.013−0.039GeVfor the potential-subtracted mass and mMSb(mMSb) =4.193+0.022−0.035GeVfor the MSbottom-quark mass.
Resumo:
The production rate of right-handed neutrinos from a Standard Model plasma at a temperature above a hundred GeV is evaluated up to NLO in Standard Model couplings. The results apply in the so-called relativistic regime, referring parametrically to a mass M ~ πT, generalizing thereby previous NLO results which only apply in the non-relativistic regime M ≫ πT. The non-relativistic expansion is observed to converge for M ≳ 15T, but the smallness of any loop corrections allows it to be used in practice already for M ≳ 4T. In the latter regime any non-covariant dependence of the differential rate on the spatial momentum is shown to be mild. The loop expansion breaks down in the ultrarelativistic regime M ≪ πT, but after a simple mass resummation it nevertheless extrapolates reasonably well towards a result obtained previously through complete LPM resummation, apparently confirming a strong enhancement of the rate at high temperatures (which facilitates chemical equilibration). When combined with other ingredients the results may help to improve upon the accuracy of leptogenesis computations operating above the electroweak scale.
Resumo:
The non-relativistic hydrogen atom enjoys an accidental SO(4) symmetry, that enlarges the rotational SO(3) symmetry, by extending the angular momentum algebra with the Runge–Lenz vector. In the relativistic hydrogen atom the accidental symmetry is partially lifted. Due to the Johnson–Lippmann operator, which commutes with the Dirac Hamiltonian, some degeneracy remains. When the non-relativistic hydrogen atom is put in a spherical cavity of radius R with perfectly reflecting Robin boundary conditions, characterized by a self-adjoint extension parameter γ, in general the accidental SO(4) symmetry is lifted. However, for R=(l+1)(l+2)a (where a is the Bohr radius and l is the orbital angular momentum) some degeneracy remains when γ=∞ or γ = 2/R. In the relativistic case, we consider the most general spherically and parity invariant boundary condition, which is characterized by a self-adjoint extension parameter. In this case, the remnant accidental symmetry is always lifted in a finite volume. We also investigate the accidental symmetry in the context of the Pauli equation, which sheds light on the proper non-relativistic treatment including spin. In that case, again some degeneracy remains for specific values of R and γ.
Resumo:
BACKGROUND Chemotherapy plus bevacizumab is a standard option for first-line treatment in metastatic colorectal cancer (mCRC) patients. We assessed whether no continuation is non-inferior to continuation of bevacizumab after completing first-line chemotherapy. PATIENTS AND METHODS In an open-label, phase III multicentre trial, patients with mCRC without disease progression after 4-6 months of standard first-line chemotherapy plus bevacizumab were randomly assigned to continuing bevacizumab at a standard dose or no treatment. CT scans were done every 6 weeks until disease progression. The primary end point was time to progression (TTP). A non-inferiority limit for hazard ratio (HR) of 0.727 was chosen to detect a difference in TTP of 6 weeks or less, with a one-sided significance level of 10% and a statistical power of 85%. RESULTS The intention-to-treat population comprised 262 patients: median follow-up was 36.7 months. The median TTP was 4.1 [95% confidence interval (CI) 3.1-5.4] months for bevacizumab continuation versus 2.9 (95% CI 2.8-3.8) months for no continuation; HR 0.74 (95% CI 0.58-0.96). Non-inferiority could not be demonstrated. The median overall survival was 25.4 months for bevacizumab continuation versus 23.8 months (HR 0.83; 95% CI 0.63-1.1; P = 0.2) for no continuation. Severe adverse events were uncommon in the bevacizumab continuation arm. Costs for bevacizumab continuation were estimated to be ∼30,000 USD per patient. CONCLUSIONS Non-inferiority could not be demonstrated for treatment holidays versus continuing bevacizumab monotheray, after 4-6 months of standard first-line chemotherapy plus bevacizumab. Based on no impact on overall survival and increased treatment costs, bevacizumab as a single agent is of no meaningful therapeutic value. More efficient treatment approaches are needed to maintain control of stabilized disease following induction therapy. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov, number NCT00544700.
Resumo:
When considering NLO corrections to thermal particle production in the “relativistic” regime, in which the invariant mass squared of the produced particle is K2 ~ (πT)2, then the production rate can be expressed as a sum of a few universal “master” spectral functions. Taking the most complicated 2-loop master as an example, a general strategy for obtaining a convergent 2-dimensional integral representation is suggested. The analysis applies both to bosonic and fermionic statistics, and shows that for this master the non-relativistic approximation is only accurate for K2 ~(8πT)2, whereas the zero-momentum approximation works surprisingly well. Once the simpler masters have been similarly resolved, NLO results for quantities such as the right-handed neutrino production rate from a Standard Model plasma or the dilepton production rate from a QCD plasma can be assembled for K2 ~ (πT)2.
Resumo:
The chemical equilibration of heavy quarks in a quark-gluon plasma proceeds via annihilation or pair creation. For temperatures T much below the heavy quark mass M, when kinetically equilibrated heavy quarks move very slowly, the annihilation in the colour singlet channel is enhanced because the quark and antiquark attract each other which increases their probability to meet, whereas the octet contribution is suppressed. This is the so-called Sommerfeld effect. It has not been taken into account in previous calculations of the chemical equilibration rate, which are therefore incomplete for T ≲ α2sM . We compute the leading-order equilibration rate in this regime; there is a large enhancement in the singlet channel, but the rate is dominated by the octet channel, and therefore the total effect is small. In the course of the computation we demonstrate how operators that represent the annihilation of heavy quarks in non-relativistic QCD can be incorporated into the imaginary-time formalism.
Resumo:
The rates for lepton number washout in extensions of the Standard Model containing right-handed neutrinos are key ingredients in scenarios for baryogenesis through leptogenesis. We relate these rates to real-time correlation functions at finite temperature, without making use of any particle approximations. The relations are valid to quadratic order in neutrino Yukawa couplings and to all orders in Standard Model couplings. They take into account all spectator processes, and apply both in the symmetric and in the Higgs phase of the electroweak theory. We use the relations to compute washout rates at next-to-leading order in g, where g denotes a Standard Model gauge or Yukawa coupling, both in the non-relativistic and in the relativistic regime. Even in the non-relativistic regime the parametrically dominant radiative corrections are only suppressed by a single power of g. In the non-relativistic regime radiative corrections increase the washout rate by a few percent at high temperatures, but they are of order unity around the weak scale and in the relativistic regime.
Resumo:
We present NLO results for thermal imaginary-time correlators in the vector and scalar channels as a function of the quark mass. The range of quark masses for which a non-relativistic approximation works in the temperature range considered is estimated, and charm quarks turn out to be a borderline case. Comparing with simulation data from fine lattices, we find good agreement in the vector channel but a substantial discrepancy in the scalar one. An explanation for the discrepancy is suggested in terms of physics of the quark-antiquark threshold region. Perturbative predictions for the bottom scalar spectral function around the threshold are also briefly reviewed.
Resumo:
The production rate of right-handed neutrinos from a Standard Model plasma at a temperature above a hundred GeV has previously been evaluated up to NLO in Standard Model couplings (g ~ 2/3) in relativistic (M ~ πT) and non-relativistic regimes (M ≫ πT), and up to LO in an ultrarelativistic regime (M ≲ gT). The last result necessitates an all-orders resummation of the loop expansion, accounting for multiple soft scatterings of the nearly light-like particles participating in 1↔2 reactions. In this paper we suggest how the regimes can be interpolated into a result applicable for any right-handed neutrino mass and at all temperatures above 160GeV. The results can also be used for determining the lepton number washout rate in models containing right-handed neutrinos. Numerical results are given in a tabulated form permitting for their incorporation into leptogenesis codes. We note that due to effects from soft Higgs bosons there is a narrow intermediate regime around M ~g 1/2 T in which our interpolation is phenomenological and a more precise study would be welcome.
Resumo:
We investigate the consequences of one extra spatial dimension for the stability and energy spectrum of the non-relativistic hydrogen atom with a potential defined by Gauss' law, i.e. proportional to 1 /| x | 2 . The additional spatial dimension is considered to be either infinite or curled-up in a circle of radius R. In both cases, the energy spectrum is bounded from below for charges smaller than the same critical value and unbounded from below otherwise. As a consequence of compactification, negative energy eigenstates appear: if R is smaller than a quarter of the Bohr radius, the corresponding Hamiltonian possesses an infinite number of bound states with minimal energy extending at least to the ground state of the hydrogen atom.
Resumo:
We derive a torsionfull version of three-dimensional N=2 Newton-Cartan supergravity using a non-relativistic notion of the superconformal tensor calculus. The “superconformal” theory that we start with is Schrödinger supergravity which we obtain by gauging the Schrödinger superalgebra. We present two non-relativistic N=2 matter multiplets that can be used as compensators in the superconformal calculus. They lead to two different off-shell formulations which, in analogy with the relativistic case, we call “old minimal” and “new minimal” Newton-Cartan supergravity. We find similarities but also point out some differences with respect to the relativistic case.
Resumo:
Perinatal care of pregnant women at high risk for preterm delivery and of preterm infants born at the limit of viability (22-26 completed weeks of gestation) requires a multidisciplinary approach by an experienced perinatal team. Limited precision in the determination of both gestational age and foetal weight, as well as biological variability may significantly affect the course of action chosen in individual cases. The decisions that must be taken with the pregnant women and on behalf of the preterm infant in this context are complex and have far-reaching consequences. When counselling pregnant women and their partners, neonatologists and obstetricians should provide them with comprehensive information in a sensitive and supportive way to build a basis of trust. The decisions are developed in a continuing dialogue between all parties involved (physicians, midwives, nursing staff and parents) with the principal aim to find solutions that are in the infant's and pregnant woman's best interest. Knowledge of current gestational age-specific mortality and morbidity rates and how they are modified by prenatally known prognostic factors (estimated foetal weight, sex, exposure or nonexposure to antenatal corticosteroids, single or multiple births) as well as the application of accepted ethical principles form the basis for responsible decision-making. Communication between all parties involved plays a central role. The members of the interdisciplinary working group suggest that the care of preterm infants with a gestational age between 22 0/7 and 23 6/7 weeks should generally be limited to palliative care. Obstetric interventions for foetal indications such as Caesarean section delivery are usually not indicated. In selected cases, for example, after 23 weeks of pregnancy have been completed and several of the above mentioned prenatally known prognostic factors are favourable or well informed parents insist on the initiation of life-sustaining therapies, active obstetric interventions for foetal indications and provisional intensive care of the neonate may be reasonable. In preterm infants with a gestational age between 24 0/7 and 24 6/7 weeks, it can be difficult to determine whether the burden of obstetric interventions and neonatal intensive care is justified given the limited chances of success of such a therapy. In such cases, the individual constellation of prenatally known factors which impact on prognosis can be helpful in the decision making process with the parents. In preterm infants with a gestational age between 25 0/7 and 25 6/7 weeks, foetal surveillance, obstetric interventions for foetal indications and neonatal intensive care measures are generally indicated. However, if several prenatally known prognostic factors are unfavourable and the parents agree, primary non-intervention and neonatal palliative care can be considered. All pregnant women with threatening preterm delivery or premature rupture of membranes at the limit of viability must be transferred to a perinatal centre with a level III neonatal intensive care unit no later than 23 0/7 weeks of gestation, unless emergency delivery is indicated. An experienced neonatology team should be involved in all deliveries that take place after 23 0/7 weeks of gestation to help to decide together with the parents if the initiation of intensive care measures appears to be appropriate or if preference should be given to palliative care (i.e., primary non-intervention). In doubtful situations, it can be reasonable to initiate intensive care and to admit the preterm infant to a neonatal intensive care unit (i.e., provisional intensive care). The infant's clinical evolution and additional discussions with the parents will help to clarify whether the life-sustaining therapies should be continued or withdrawn. Life support is continued as long as there is reasonable hope for survival and the infant's burden of intensive care is acceptable. If, on the other hand, the health car...