11 resultados para lung dead space
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Sleep disordered breathing with central apnea or hypopnea frequently occurs at high altitude and is thought to be caused by a decrease in blood CO(2) level. The aim of this study was to assess the effects of added respiratory dead space on sleep disordered breathing.
Resumo:
BACKGROUND: The time course of impairment of respiratory mechanics and gas exchange in the acute respiratory distress syndrome (ARDS) remains poorly defined. We assessed the changes in respiratory mechanics and gas exchange during ARDS. We hypothesized that due to the changes in respiratory mechanics over time, ventilatory strategies based on rigid volume or pressure limits might fail to prevent overdistension throughout the disease process. METHODS: Seventeen severe ARDS patients {PaO2/FiO2 10.1 (9.2-14.3) kPa; 76 (69-107) mmHg [median (25th-75th percentiles)] and bilateral infiltrates} were studied during the acute, intermediate, and late stages of ARDS (at 1-3, 4-6 and 7 days after diagnosis). Severity of lung injury, gas exchange, and hemodynamics were assessed. Pressure-volume (PV) curves of the respiratory system were obtained, and upper and lower inflection points (UIP, LIP) and recruitment were estimated. RESULTS: (1) UIP decreased from early to established (intermediate and late) ARDS [30 (28-30) cmH2O, 27 (25-30) cmH2O and 25 (23-28) cmH2O (P=0.014)]; (2) oxygenation improved in survivors and in patients with non-pulmonary etiology in late ARDS, whereas all patients developed hypercapnia from early to established ARDS; and (3) dead-space ventilation and pulmonary shunt were larger in patients with pulmonary etiology during late ARDS. CONCLUSION: We found a decrease in UIP from acute to established ARDS. If applied to our data, the inspiratory pressure limit advocated by the ARDSnet (30 cmH2O) would produce ventilation over the UIP, with a consequent increased risk of overdistension in 12%, 43% and 65% of our patients during the acute, intermediate and late phases of ARDS, respectively. Lung protective strategies based on fixed tidal volume or pressure limits may thus not fully avoid the risk of lung overdistension throughout ARDS.
Resumo:
BACKGROUND AND OBJECTIVES Multiple-breath washout (MBW) is an attractive test to assess ventilation inhomogeneity, a marker of peripheral lung disease. Standardization of MBW is hampered as little data exists on possible measurement bias. We aimed to identify potential sources of measurement bias based on MBW software settings. METHODS We used unprocessed data from nitrogen (N2) MBW (Exhalyzer D, Eco Medics AG) applied in 30 children aged 5-18 years: 10 with CF, 10 formerly preterm, and 10 healthy controls. This setup calculates the tracer gas N2 mainly from measured O2 and CO2concentrations. The following software settings for MBW signal processing were changed by at least 5 units or >10% in both directions or completely switched off: (i) environmental conditions, (ii) apparatus dead space, (iii) O2 and CO2 signal correction, and (iv) signal alignment (delay time). Primary outcome was the change in lung clearance index (LCI) compared to LCI calculated with the settings as recommended. A change in LCI exceeding 10% was considered relevant. RESULTS Changes in both environmental and dead space settings resulted in uniform but modest LCI changes and exceeded >10% in only two measurements. Changes in signal alignment and O2 signal correction had the most relevant impact on LCI. Decrease of O2 delay time by 40 ms (7%) lead to a mean LCI increase of 12%, with >10% LCI change in 60% of the children. Increase of O2 delay time by 40 ms resulted in mean LCI decrease of 9% with LCI changing >10% in 43% of the children. CONCLUSIONS Accurate LCI results depend crucially on signal processing settings in MBW software. Especially correct signal delay times are possible sources of incorrect LCI measurements. Algorithms of signal processing and signal alignment should thus be optimized to avoid susceptibility of MBW measurements to this significant measurement bias.
Resumo:
Velopharyngeal insufficiency in cleft patients with muscular insufficiency detected by nasendoscopy is commonly treated by secondary radical intravelar veloplasty, in which the palatal muscles are reoriented and positioned backwards. The dead space between the retro-displaced musculature and the posterior borders of the palatal bone remains problematic. Postoperatively, the surgically achieved lengthening of the soft palate often diminishes due to scar tissue formation in the dead space, leading to reattachment of the reoriented muscles to the palatal bone and to decreased mobility of the soft palate. To avoid this, the dead space should be restored by a structure imitating the function of the missing palatal aponeurosis. The entire dead space was covered using a double layer of autogenous fascia lata harvested from the lateral thigh, which should allow sufficient and permanent sliding of the retro-positioned musculature. A clinical case of a 9-year-old boy who underwent the operation is reported. Postoperatively, marked functional improvements were observable in speech assessment, nasendoscopy and nasometry. The case reported here suggests that the restoration of the dead space may be beneficial for effective secondary palatal repair. Fascia lata seems to be a suitable graft for this purpose.
Resumo:
Soft tissue coverage of the medial ankle and foot remains a difficult, challenging, and often frustrating problem to patients as well as surgeons. To our knowledge, the abductor hallucis muscle flap is not frequently used and only a few well documented cases were found in literature. The purpose of this paper is to report and to present the long-term results of a series of four patients who underwent reconstruction of foot and ankle defects with the abductor hallucis muscle flap.In two cases, the abductor hallucis muscle flap was transposed in combination with a medialis pedis flap to cover a medial ankle defect, whereas in another case it was combined with a medial plantar flap. In this latter case, the muscle flap served to fill up a calcaneal dead space after osteomyelitis debridement, whereas the cutaneous flap was used to replace debrided skin at the heel. The abductor hallucis flap was used as a distally-based turnover flap to cover a large forefoot defect in a fourth case. Follow-up period ranged between 18 and 64 months (mean 43.3). In the early postoperative period, two flaps healed completely In two patients marginal flap necrosis occurred which was subsequently skin grafted. No donor-site complication occurred in any of the patients. In all cases, protective sensation of the skin was satisfactory as early as 6 months. In two cases mild hyperkeratosis at the skin graft border to the sole skin (non-weight bearing area of medial plantar and medialis pedis flap donor site) was present, but probably related to poor foot care. All patients were fully mobile as early as 3 months after treatment. In the long-term follow-up (43.3 months), all flaps provided with durable coverage. Functional gait deficit due to consumtion of the abductor hallucis muscle was not apparent.Our long-term results demonstrated that the abductor hallucis muscle flap is a versatile, and reliable flap suitable for the reconstruction of foot and ankle defects. Utilizing the abductor hallucis muscle as a pedicled flap (distally or proximally-based) with or without conjoined regional fasciocutaneous flaps offers a successful and durable alternative to microsurgical tree flaps for small to moderate defects over the calcaneus region, medial ankle, medial foot, and forefoot with exposed bone, tendon, or joint.
Resumo:
The aim of this study was to test the effect of cardiac output (CO) and pulmonary artery hypertension (PHT) on volumetric capnography (VCap) derived-variables. Nine pigs were mechanically ventilated using fixed ventilatory settings. Two steps of PHT were induced by IV infusion of a thromboxane analogue: PHT25 [mean pulmonary arterial pressure (MPAP) of 25 mmHg] and PHT40 (MPAP of 40 mmHg). CO was increased by 50 % from baseline (COup) with an infusion of dobutamine ≥5 μg kg(-1) min(-1) and decreased by 40 % from baseline (COdown) infusing sodium nitroglycerine ≥30 μg kg(-1) min(-1) plus esmolol 500 μg kg(-1) min(-1). Another state of PHT and COdown was induced by severe hypoxemia (FiO2 0.07). Invasive hemodynamic data and VCap were recorded and compared before and after each step using a mixed random effects model. Compared to baseline, the normalized slope of phase III (SnIII) increased by 32 % in PHT25 and by 22 % in PHT40. SnIII decreased non-significantly by 4 % with COdown. A combination of PHT and COdown associated with severe hypoxemia increased SnIII by 28 % compared to baseline. The elimination of CO2 per breath decreased by 7 % in PHT40 and by 12 % in COdown but increased only slightly with COup. Dead space variables did not change significantly along the protocol. At constant ventilation and body metabolism, pulmonary artery hypertension and decreases in CO had the biggest effects on the SnIII of the volumetric capnogram and on the elimination of CO2.
Resumo:
In ongoing chronic rejection after lung transplantation, alveolar interstitial fibrosis develops. However, little is known about the mechanisms involved. In order to investigate these mechanisms, expression of extracellular matrix molecules (ECM) (undulin, decorin, tenascin, laminin, and fibronectin) and cytokines [transforming growth factor (TGF)-beta 1, TGF-beta 3, platelet-derived growth factor (PDGF), and PDGF receptor] were semiquantitatively evaluated in chronically rejected lung allografts, using standard immunohistochemical techniques. Additionally, the presence of macrophages was analysed. The present study demonstrates an increased infiltration of macrophages with a concomitant upregulation of cytokines (TGF-beta 1, TGF-beta 3, and PDGF) and an increased deposition of ECM in chronic lung rejection. These cytokines have an important role in the stimulation of fibroblasts which are a major source of ECM. Upregulated expression of ECM in the alveolar interstitial space leads to alveolar malfunction by thickening of the wall and, thus, is one of the causative factors of respiratory dysfunction in chronic lung graft rejection.
Resumo:
BACKGROUND: In the acute respiratory distress syndrome potentially recruitable lung volume is currently discussed. (3)He-magnetic resonance imaging ((3)He-MRI) offers the possibility to visualize alveolar recruitment directly. METHODS: With the approval of the state animal care committee, unilateral lung damage was induced in seven anesthetized pigs by saline lavage of the right lungs. The left lung served as an intraindividual control (healthy lung). Unilateral lung damage was confirmed by conventional proton MRI and spiral-CT scanning. The total aerated lung volume was determined both at a positive end-expiratory pressure (PEEP) of 0 and 10 mbar from three-dimensionally reconstructed (3)He images, both for healthy and damaged lungs. The fractional increase of aerated volume in damaged and healthy lungs, followed by a PEEP increase from 0 to 10 mbar, was compared. RESULTS: Aerated gas space was visualized with a high spatial resolution in the three-dimensionally reconstructed (3)He-MR images, and aeration defects in the lavaged lung matched the regional distribution of atelectasis in proton MRI. After recruitment and PEEP increase, the aerated volume increased significantly both in healthy lungs from 415 ml [270-445] (median [min-max]) to 481 ml [347-523] and in lavaged lungs from 264 ml [71-424] to 424 ml [129-520]. The fractional increase in lavaged lungs was significantly larger than that in healthy lungs (healthy: 17% [11-38] vs. lavage: 42% [14-90] (P=0.031). CONCLUSION: The (3)He-MRI signal might offer an experimental approach to discriminate atelectatic vs. poor aerated lung areas in a lung damage animal model. Our results confirm the presence of potential recruitable lung volume by either alveolar collapse or alveolar flooding, in accordance with previous reports by computed tomography.
Resumo:
Mucus clearance is an important airway innate defense mechanism. Airway-targeted overexpression of the epithelial Na(+) channel β-subunit [encoded by sodium channel nonvoltage gated 1, beta subunit (Scnn1b)] in mice [Scnn1b-transgenic (Tg) mice] increases transepithelial Na(+) absorption and dehydrates the airway surface, which produces key features of human obstructive lung diseases, including mucus obstruction, inflammation, and air-space enlargement. Because the first Scnn1b-Tg mice were generated on a mixed background, the impact of genetic background on disease phenotype in Scnn1b-Tg mice is unknown. To explore this issue, congenic Scnn1b-Tg mice strains were generated on C57BL/6N, C3H/HeN, BALB/cJ, and FVB/NJ backgrounds. All strains exhibited a two- to threefold increase in tracheal epithelial Na(+) absorption, and all developed airway mucus obstruction, inflammation, and air-space enlargement. However, there were striking differences in neonatal survival, ranging from 5 to 80% (FVB/NJ
Resumo:
PURPOSE Lymphangioleiomyomatosis (LAM) is characterized by proliferation of smooth muscle tissue that causes bronchial obstruction and secondary cystic destruction of lung parenchyma. The aim of this study was to evaluate the typical distribution of cystic defects in LAM with quantitative volumetric chest computed tomography (CT). MATERIALS AND METHODS CT examinations of 20 patients with confirmed LAM were evaluated with region-based quantification of lung parenchyma. Additionally, 10 consecutive patients were identified who had recently undergone CT imaging of the lung at our institution, in which no pathologies of the lung were found, to serve as a control group. Each lung was divided into three regions (upper, middle and lower thirds) with identical number of slices. In addition, we defined a "peel" and "core" of the lung comprising the 2 cm subpleural space and the remaining inner lung area. Computerized detection of lung volume and relative emphysema was performed with the PULMO 3D software (v3.42, Fraunhofer MEVIS, Bremen, Germany). This software package enables the quantification of emphysematous lung parenchyma by calculating the pixel index, which is defined as the ratio of lung voxels with a density <-950HU to the total number of voxels in the lung. RESULTS Cystic changes accounted for 0.1-39.1% of the total lung volume in patients with LAM. Disease manifestation in the central lung was significantly higher than in peripheral areas (peel median: 15.1%, core median: 20.5%; p=0.001). Lower thirds of lung parenchyma showed significantly less cystic changes than upper and middle lung areas combined (lower third: median 13.4, upper and middle thirds: median 19.0, p=0.001). CONCLUSION The distribution of cystic lesions in LAM is significantly more pronounced in the central lung compared to peripheral areas. There is a significant predominance of cystic changes in apical and intermediate lung zones compared to the lung bases.
Resumo:
Structural and functional complexities of the mammalian lung evolved to meet a unique set of challenges, namely, the provision of efficient delivery of inspired air to all lung units within a confined thoracic space, to build a large gas exchange surface associated with minimal barrier thickness and a microvascular network to accommodate the entire right ventricular cardiac output while withstanding cyclic mechanical stresses that increase several folds from rest to exercise. Intricate regulatory mechanisms at every level ensure that the dynamic capacities of ventilation, perfusion, diffusion, and chemical binding to hemoglobin are commensurate with usual metabolic demands and periodic extreme needs for activity and survival. This article reviews the structural design of mammalian and human lung, its functional challenges, limitations, and potential for adaptation. We discuss (i) the evolutionary origin of alveolar lungs and its advantages and compromises, (ii) structural determinants of alveolar gas exchange, including architecture of conducting bronchovascular trees that converge in gas exchange units, (iii) the challenges of matching ventilation, perfusion, and diffusion and tissue-erythrocyte and thoracopulmonary interactions. The notion of erythrocytes as an integral component of the gas exchanger is emphasized. We further discuss the signals, sources, and limits of structural plasticity of the lung in alveolar hypoxia and following a loss of lung units, and the promise and caveats of interventions aimed at augmenting endogenous adaptive responses. Our objective is to understand how individual components are matched at multiple levels to optimize organ function in the face of physiological demands or pathological constraints. © 2016 American Physiological Society. Compr Physiol 6:827-895, 2016.