14 resultados para lean meat

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report the identification of quantitative trait loci (QTL) affecting carcass composition, carcass length, fat deposition and lean meat content using a genome scan across 462 animals from a combined intercross and backcross between Hampshire and Landrace pigs. Data were analysed using multiple linear regression fitting additive and dominance effects. This model was compared with a model including a parent-of-origin effect to spot evidence of imprinting. Several precisely defined muscle phenotypes were measured in order to dissect body composition in more detail. Three significant QTL were detected in the study at the 1% genome-wide level, and twelve significant QTL were detected at the 5% genome-wide level. These QTL comprise loci affecting fat deposition and lean meat content on SSC1, 4, 9, 10, 13 and 16, a locus on SSC2 affecting the ratio between weight of meat and bone in back and weight of meat and bone in ham and two loci affecting carcass length on SSC12 and 17. The well-defined phenotypes in this study enabled us to detect QTL for sizes of individual muscles and to obtain information of relevance for the description of the complexity underlying other carcass traits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Toxoplasmosis is one of the most important zoonotic diseases worldwide and is caused by the protozoan Toxoplasma gondii. Besides vertical infection during pregnancy, humans can get infected post-natally either by peroral uptake of sporulated Toxoplasma oocysts or by ingestion of tissue cysts upon consumption of raw or undercooked meat. The aim of this study was to approximate the risk of human infection via meat consumption by estimating the seroprevalence of T. gondii in slaughtered animals in Switzerland and to compare data with prevalences assessed 10 years ago. The study included pigs, cattle, sheep and wild boar of different age groups and housing conditions whenever possible and applicable. A P-30-ELISA was used to detect T. gondii-specific antibodies and to determine seroprevalences in meat juice of slaughtered animals. A total of 270 domestic pigs (120 adults, 50 finishing, 100 free-ranging animals), 150 wild boars, 250 sheep (150 adults, 100 lambs) and 406 cattle (47 calves, 129 heifers, 100 bulls, 130 adult cows) were tested. Seropositivity increased with the age of the assessed animals. Independent of the age-group, the overall seroprevalence was lowest in wild boars (6.7%), followed by pigs (23.3%), cattle (45.6%) and sheep (61.6%), respectively. Conventional fattening pigs and free-ranging pigs surprisingly had comparable seroprevalences (14.0% and 13.0%, respectively). Unlike in other European countries, where generally a decrease in the number of seropositive animals had been observed, we found that the prevalence of seropositive animals, when compared with that of 10 years ago, had increased for most species/age groups. Conclusively, the results demonstrated a high seroprevalence of T. gondii in animals slaughtered for meat production and revealed that increasing age of the animals is a more important risk factor than housing conditions in Switzerland.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The protozoan parasite Toxoplasma gondii infects almost all warm blooded animal species including humans, and is one of the most prevalent zoonotic parasites worldwide. Post-natal infection in humans is acquired through oral uptake of sporulated T. gondii oocysts or by ingestion of parasite tissue cysts upon consumption of raw or undercooked meat. This study was undertaken to determine the prevalence of oocyst-shedding by cats and to assess the level of infection with T. gondii in meat-producing animals in Switzerland via detection of genomic DNA (gDNA) in muscle samples. In total, 252 cats (44 stray cats, 171 pet cats, 37 cats with gastrointestinal disorders) were analysed coproscopically, and subsequently species-specific identification of T. gondii oocysts was achieved by Polymerase Chain Reaction (PCR). Furthermore, diaphragm samples of 270 domestic pigs (120 adults, 50 finishing, and 100 free-range animals), 150 wild boar, 250 sheep (150 adults and 100 lambs) and 406 cattle (47 calves, 129 heifers, 100 bulls, and 130 adult cows) were investigated by T. gondii-specific real-time PCR. For the first time in Switzerland, PCR-positive samples were subsequently genotyped using nine PCR-restriction fragment length polymorphism (PCR-RFLP) loci (SAG2, SAG3, BTUB, GRA6, c22-8, c29-2, L358, PK1 and Apico) for analysis. Only one of the cats shed T. gondii oocysts, corresponding to a T. gondii prevalence of 0.4% (95% CI: 0.0-2.2%). In meat-producing animals, gDNA prevalence was lowest in wild boar (0.7%; 95% CI: 0.0-3.7%), followed by sheep (2.0%; 95% CI: 0.1-4.6%) and pigs (2.2%; 95% CI: 0.8-4.8%). The highest prevalence was found in cattle (4.7%; 95% CI: 2.8-7.2%), mainly due to the high prevalence of 29.8% in young calves. With regard to housing conditions, conventional fattening pigs and free-range pigs surprisingly exhibited the same prevalence (2.0%; 95% CI: 0.2-7.0%). Genotyping of oocysts shed by the cat showed T. gondii with clonal Type II alleles and the Apico I allele. T. gondii with clonal Type II alleles were also predominantly observed in sheep, while T. gondii with mixed or atypical allele combinations were very rare in sheep. In pigs and cattle however, genotyping of T. gondii was often incomplete. These findings suggested that cattle in Switzerland might be infected with Toxoplasma of the clonal Types I or III, atypical T. gondii or more than one clonal Type.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Oxidative killing is the primary defense against surgical pathogens; risk of infection is inversely related to tissue oxygenation. Subcutaneous tissue oxygenation in obese patients is significantly less than in lean patients during general anesthesia. However, it remains unknown whether reduced intraoperative tissue oxygenation in obese patients results from obesity per se or from a combination of anesthesia and surgery. In a pilot study, we tested the hypothesis that tissue oxygenation is reduced in spontaneously breathing, unanesthetized obese volunteers. METHODS: Seven lean volunteers with a body mass index (BMI) of 22 +/- 2 kg/m(2) were compared to seven volunteers with a BMI of 46 +/- 4 kg/m(2). Volunteers were subjected to the following oxygen challenges: (1) room air; (2) 2 l/min oxygen via nasal prongs, (3) 6 l/min oxygen through a rebreathing face mask; (4) oxygen as needed to achieve an arterial oxygen pressure (arterial pO(2)) of 200 mmHg; and (5) oxygen as needed to achieve an arterial pO(2) of 300 mmHg. The oxygen challenges were randomized. Arterial pO(2) was measured with a continuous intraarterial blood gas analyzer (Paratrend 7); deltoid subcutaneous tissue oxygenation was measured with a polarographic microoxygen sensor (Licox). RESULTS: Subcutaneous tissue oxygenation was similar in lean and obese volunteers: (1) room air, 52 +/- 10 vs 58 +/- 8 mmHg; (2) 2 l/min, 77 +/- 25 vs 79 +/- 24 mmHg; (3) 6 l/min, 125 +/- 43 vs 121 +/- 25 mmHg; (4) arterial pO(2) = 200 mmHg, 115 +/- 42 vs 144 +/- 23 mmHg; (5) arterial pO(2) = 300 mmHg, 145 +/- 41 vs 154 +/- 32 mmHg. CONCLUSION: In this pilot study, we could not identify significant differences in deltoid subcutaneous tissue oxygen pressure between lean and morbidly obese volunteers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of these studies was to investigate whether insulin resistance is primary to skeletal muscle. Myoblasts were isolated from muscle biopsies of 8 lean insulin-resistant and 8 carefully matched insulin-sensitive subjects (metabolic clearance rates as determined by euglycemic-hyperinsulinemic clamp: 5.8 +/- 0.5 vs. 12.3 +/- 1.7 ml x kg(-1) x min(-1), respectively; P < or = 0.05) and differentiated to myotubes. In these cells, insulin stimulation of glucose uptake, glycogen synthesis, insulin receptor (IR) kinase activity, and insulin receptor substrate 1-associated phosphatidylinositol 3-kinase (PI 3-kinase) activity were measured. Furthermore, insulin activation of protein kinase B (PKB) was compared with immunoblotting of serine residues at position 473. Basal glucose uptake (1.05 +/- 0.07 vs. 0.95 +/- 0.07 relative units, respectively; P = 0.49) and basal glycogen synthesis (1.02 +/- 0.11 vs. 0.98 +/- 0.11 relative units, respectively; P = 0.89) were not different in myotubes from insulin-resistant and insulin-sensitive subjects. Maximal insulin responsiveness of glucose uptake (1.35 +/- 0.03-fold vs. 1.41 +/- 0.05-fold over basal for insulin-resistant and insulin-sensitive subjects, respectively; P = 0.43) and glycogen synthesis (2.00 +/- 0.13-fold vs. 2.10 +/- 0.16-fold over basal for insulin-resistant and insulin-sensitive subjects, respectively; P = 0.66) were also not different. Insulin stimulation (1 nmol/l) of IR kinase and PI 3-kinase were maximal within 5 min (approximately 8- and 5-fold over basal, respectively), and insulin activation of PKB was maximal within 15 min (approximately 3.5-fold over basal). These time kinetics were not significantly different between groups. In summary, our data show that insulin action and signaling in cultured skeletal muscle cells from normoglycemic lean insulin-resistant subjects is not different from that in cells from insulin-sensitive subjects. This suggests an important role of environmental factors in the development of insulin resistance in skeletal muscle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Meat and meat products can be contaminated with different species of bacteria resistant to various antimicrobials. The human health risk of a type of meat or meat product carry by emerging antimicrobial resistance depends on (i) the prevalence of contamination with resistant bacteria, (ii) the human health consequences of an infection with a specific bacterium resistant to a specific antimicrobial and (iii) the consumption volume of a specific product. The objective of this study was to compare the risk for consumers arising from their exposure to antibiotic resistant bacteria from meat of four different types (chicken, pork, beef and veal), distributed in four different product categories (fresh meat, frozen meat, dried raw meat products and heat-treated meat products). A semi-quantitative risk assessment model, evaluating each food chain step, was built in order to get an estimated score for the prevalence of Campylobacter spp., Enterococcus spp. and Escherichia coli in each product category. To assess human health impact, nine combinations of bacterial species and antimicrobial agents were considered based on a published risk profile. The combination of the prevalence at retail, the human health impact and the amount of meat or product consumed, provided the relative proportion of total risk attributed to each category of product, resulting in a high, medium or low human health risk. According to the results of the model, chicken (mostly fresh and frozen meat) contributed 6.7% of the overall risk in the highest category and pork (mostly fresh meat and dried raw meat products) contributed 4.0%. The contribution of beef and veal was of 0.4% and 0.1% respectively. The results were tested and discussed for single parameter changes of the model. This risk assessment was a useful tool for targeting antimicrobial resistance monitoring to those meat product categories where the expected risk for public health was greater.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multilocus sequence typing (MLST) and antibiotic resistance patterns of Campylobacter jejuni and Campylobacter coli from retail chicken meat showed high overlap with isolates collected at slaughterhouses, indicating little selection along the production chain. They also showed significant common sequence types with human clinical isolates, revealing chicken meat as a likely source for human infection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prevalence and genetic relatedness were determined for third-generation cephalosporin-resistant Escherichia coli (3GC-R-Ec) detected in Swiss beef, veal, pork, and poultry retail meat. Samples from meat-packing plants (MPPs) processing 70% of the slaughtered animals in Switzerland were purchased at different intervals between April and June 2013 and analyzed. Sixty-nine 3GC-R-Ec isolates were obtained and characterized by microarray, PCR/DNA sequencing, Multi Locus Sequence Typing (MLST), and plasmid replicon typing. Plasmids of selected strains were transformed by electroporation into E. coli TOP10 cells and analyzed by plasmid MLST. The prevalence of 3GC-R-Ec was 73.3% in chicken and 2% in beef meat. No 3GC-R-Ec were found in pork and veal. Overall, the blaCTX-M-1 (79.4%), blaCMY-2 (17.6%), blaCMY-4 (1.5%), and blaSHV-12 (1.5%) β-lactamase genes were detected, as well as other genes conferring resistance to chloramphenicol (cmlA1-like), sulfonamides (sul), tetracycline (tet), and trimethoprim (dfrA). The 3GC-R-Ec from chicken meat often harbored virulence genes associated with avian pathogens. Plasmid incompatibility (Inc) groups IncI1, IncFIB, IncFII, and IncB/O were the most frequent. A high rate of clonality (e.g., ST1304, ST38, and ST93) among isolates from the same MPPs suggests that strains persist at the plant and spread to meat at the carcass-processing stage. Additionally, the presence of the blaCTX-M-1 gene on an IncI1 plasmid sequence type 3 (IncI1/pST3) in genetically diverse strains indicates interstrain spread of an epidemic plasmid. The blaCMY-2 and blaCMY-4 genes were located on IncB/O plasmids. This study represents the first comprehensive assessment of 3GC-R-Ec in meat in Switzerland. It demonstrates the need for monitoring contaminants and for the adaptation of the Hazard Analysis and Critical Control Point concept to avoid the spread of multidrug-resistant bacteria through the food chain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This subject is reviewed under the following headings: Microbial contamination of raw meat and raw milk; Antibiotic resistance of food-borne pathogens; Antibiotic resistance of commensal and potentially pathogenic bacteria as a new threat in food microbiology; Antibiotic-resistant staphylococci in fermented meat and [in] milk products; Antibiotic-resistant Enterococcus sp. in fermented meat and [in] milk products; Enterococci in farm animals and meat; Enterococci in fermented food; Molecular characterization of resistance of food-borne enterococci; and Further ecological and epidemiological considerations of resistant live bacteria in food. It is concluded that further research is needed, particularly into the possible transfer of the resistance of bacteria consumed in meat or milk products to the indigenous bacteria of the human consumer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The spread of antibiotic-resistant bacteria through food has become a major public health concern because some important human pathogens may be transferred via the food chain. Acinetobacter baumannii is one of the most life-threatening gram-negative pathogens; multidrug-resistant (MDR) clones of A. baumannii are spreading worldwide, causing outbreaks in hospitals. However, the role of raw meat as a reservoir of A. baumannii remains unexplored. In this study, we describe for the first time the antibiotic susceptibility and fingerprint (repetitive extragenic palindromic PCR [rep-PCR] profile and sequence types [STs]) of A. baumannii strains found in raw meat retailed in Switzerland. Our results indicate that A. baumannii was present in 62 (25.0%) of 248 (CI 95%: 19.7 to 30.9%) meat samples analyzed between November 2012 and May 2013, with those derived from poultry being the most contaminated (48.0% [CI 95%: 37.8 to 58.3%]). Thirty-nine strains were further tested for antibiotic susceptibility and clonality. Strains were frequently not susceptible (intermediate and/or resistant) to third- and fourth-generation cephalosporins for human use (i.e., ceftriaxone [65%], cefotaxime [32%], ceftazidime [5%], and cefepime [2.5%]). Resistance to piperacillin-tazobactam, ciprofloxacin, colistin, and tetracycline was sporadically observed (2.5, 2.5, 5, and 5%, respectively), whereas resistance to carbapenems was not found. The strains were genetically very diverse from each other and belonged to 29 different STs, forming 12 singletons and 6 clonal complexes (CCs), of which 3 were new (CC277, CC360, and CC347). RepPCR analysis further distinguished some strains of the same ST. Moreover, some A. baumannii strains from meat belonged to the clonal complexes CC32 and CC79, similar to the MDR isolates responsible for human infections. In conclusion, our findings suggest that raw meat represents a reservoir of MDR A. baumannii and may serve as a vector for the spread of these pathogens into both community and hospital settings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION Extended-spectrum beta-lactamases (ESBL) and AmpC beta-lactamases (AmpC) are of concern for veterinary and public health because of their ability to cause treatment failure due to antimicrobial resistance in Enterobacteriaceae. The main objective was to assess the relative contribution (RC) of different types of meat to the exposure of consumers to ESBL/AmpC and their potential importance for human infections in Denmark. MATERIAL AND METHODS The prevalence of each genotype of ESBL/AmpC-producing E. coli in imported and nationally produced broiler meat, pork and beef was weighted by the meat consumption patterns. Data originated from the Danish surveillance program for antibiotic use and antibiotic resistance (DANMAP) from 2009 to 2011. DANMAP also provided data about human ESBL/AmpC cases in 2011, which were used to assess a possible genotype overlap. Uncertainty about the occurrence of ESBL/AmpC-producing E. coli in meat was assessed by inspecting beta distributions given the available data of the genotypes in each type of meat. RESULTS AND DISCUSSION Broiler meat represented the largest part (83.8%) of the estimated ESBL/AmpC-contaminated pool of meat compared to pork (12.5%) and beef (3.7%). CMY-2 was the genotype with the highest RC to human exposure (58.3%). However, this genotype is rarely found in human infections in Denmark. CONCLUSION The overlap between ESBL/AmpC genotypes in meat and human E. coli infections was limited. This suggests that meat might constitute a less important source of ESBL/AmpC exposure to humans in Denmark than previously thought - maybe because the use of cephalosporins is restricted in cattle and banned in poultry and pigs. Nonetheless, more detailed surveillance data are required to determine the contribution of meat compared to other sources, such as travelling, pets, water resources, community and hospitals in the pursuit of a full source attribution model.