8 resultados para laboratory work
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The study is based on experimental work conducted in alpine snow. We made microwave radiometric and near-infrared reflectance measurements of snow slabs under different experimental conditions. We used an empirical relation to link near-infrared reflectance of snow to the specific surface area (SSA), and converted the SSA into the correlation length. From the measurements of snow radiances at 21 and 35 GHz , we derived the microwave scattering coefficient by inverting two coupled radiative transfer models (the sandwich and six-flux model). The correlation lengths found are in the same range as those determined in the literature using cold laboratory work. The technique shows great potential in the determination of the snow correlation length under field conditions.
Resumo:
Background: A clinically relevant bleeding diathesis is a frequent diagnostic challenge, which sometimes remains unexplained despite extensive investigations. The aim of our work was to evaluate the diagnostic utility of functional platelet testing by flow cytometry in this context. Methods: In case of negative results after standard laboratory work-up, flow cytometric analysis (FCA) of platelet function was done. We performed analysis of surface glycoproteins (GP) Ibα, IIb, IIIa; P-selectin expression and PAC-1 binding after graded doses of ADP, collagen and thrombin; content/secretion of dense granules; ability to generate procoagulant platelets. Results: Out of 437 patients investigated with standard tests between January 2007 and December 2011, we identified 67 (15.3%) with high bleeding scores and non-diagnostic standard laboratory work-up including platelet aggregation studies. Among these patients FCA revealed some potentially causative platelet defects: decreased dense-granule content/secretion (n=13); decreased alpha-granule secretion induced by ADP (n=10), convulxin (n=4) or thrombin (n=3); decreased fibrinogen-receptor activation induced by ADP (n=11), convulxin (n=11) or thrombin (n=8); decreased generation of COAT-platelets, i.e. highly procoagulant platelets induced by simultaneous activation with collagen and thrombin (n=16). Conclusion: Our work confirms that storage pool defects are frequent in patients with a bleeding diathesis and normal coagulation and platelet aggregations studies. Additionally, flow cytometric analysis is able to identify discrete platelet activation defects. In particular, we show for the first time that a relevant proportion of these patients has an isolated impaired ability to generate COAT-platelets - a conceptually new defect in platelet procoagulant activity, that is missed by conventional laboratory work-up. © 2014 Clinical Cytometry Society.
Resumo:
Background: Very few mitochondrial myopathies have been described in horses. Objective: To examine the ultrastructure of muscle mitochondria in equine cases of myopathy of unknown origin. Materials & methods: Biopsies of vastus lateralis of the Musculus quadriceps femoris were taken predominantly immediately post mortem and processed for transmission electron microscopy. As a result, electron micrographs of 90 horses in total were available for analysis comprising 4 control horses, 16 horses suffering from myopathy and 70 otherwise diseased horses. Results: Following a thorough clinical and laboratory work-up, four out of five patients that did not fit into the usual algorithm to detect known causes of myopathy showed ultrastructural mitochondrial alterations. Small mitochondria with zones with complete disruption of cristae associated with lactic acidemia were detected in a 17-year-old pony mare, extremely long and slender mitochondria with longitudinal cristae in a 5-year-old Quarter horse stallion, a mixture of irregular extremely large mitochondria (measuring 2500 by 800 nm) next to smaller ones in an 8-year-old Hanoverian mare and round mitochondria with only few cristae in a 11-year-old pony gelding. It remains uncertain whether the subsarcolemmal mitochondrial accumulations observed in the fifth patient have any pathological significance. Conclusions: Ultrastructural alterations in mitochondria were detected in at least four horses. To conclude that these are due to mitochondrial dysfuntions, biochemical tests should be performed. Practical applications: The possibility of a mitochondrial myopathy should be included in the differential diagnosis of muscle weakness.
Resumo:
PURPOSE To compare time-efficiency in the production of implant crowns using a digital workflow versus the conventional pathway. MATERIALS AND METHODS This prospective clinical study used a crossover design that included 20 study participants receiving single-tooth replacements in posterior sites. Each patient received a customized titanium abutment plus a computer-aided design/computer-assisted manufacture (CAD/CAM) zirconia suprastructure (for those in the test group, using digital workflow) and a standardized titanium abutment plus a porcelain-fused-to-metal crown (for those in the control group, using a conventional pathway). The start of the implant prosthetic treatment was established as the baseline. Time-efficiency analysis was defined as the primary outcome, and was measured for every single clinical and laboratory work step in minutes. Statistical analysis was calculated with the Wilcoxon rank sum test. RESULTS All crowns could be provided within two clinical appointments, independent of the manufacturing process. The mean total production time, as the sum of clinical plus laboratory work steps, was significantly different. The mean ± standard deviation (SD) time was 185.4 ± 17.9 minutes for the digital workflow process and 223.0 ± 26.2 minutes for the conventional pathway (P = .0001). Therefore, digital processing for overall treatment was 16% faster. Detailed analysis for the clinical treatment revealed a significantly reduced mean ± SD chair time of 27.3 ± 3.4 minutes for the test group compared with 33.2 ± 4.9 minutes for the control group (P = .0001). Similar results were found for the mean laboratory work time, with a significant decrease of 158.1 ± 17.2 minutes for the test group vs 189.8 ± 25.3 minutes for the control group (P = .0001). CONCLUSION Only a few studies have investigated efficiency parameters of digital workflows compared with conventional pathways in implant dental medicine. This investigation shows that the digital workflow seems to be more time-efficient than the established conventional production pathway for fixed implant-supported crowns. Both clinical chair time and laboratory manufacturing steps could be effectively shortened with the digital process of intraoral scanning plus CAD/CAM technology.
Resumo:
OBJECTIVES The aim of this prospective cohort trial was to perform a cost/time analysis for implant-supported single-unit reconstructions in the digital workflow compared to the conventional pathway. MATERIALS AND METHODS A total of 20 patients were included for rehabilitation with 2 × 20 implant crowns in a crossover study design and treated consecutively each with customized titanium abutments plus CAD/CAM-zirconia-suprastructures (test: digital) and with standardized titanium abutments plus PFM-crowns (control conventional). Starting with prosthetic treatment, analysis was estimated for clinical and laboratory work steps including measure of costs in Swiss Francs (CHF), productivity rates and cost minimization for first-line therapy. Statistical calculations were performed with Wilcoxon signed-rank test. RESULTS Both protocols worked successfully for all test and control reconstructions. Direct treatment costs were significantly lower for the digital workflow 1815.35 CHF compared to the conventional pathway 2119.65 CHF [P = 0.0004]. For subprocess evaluation, total laboratory costs were calculated as 941.95 CHF for the test group and 1245.65 CHF for the control group, respectively [P = 0.003]. The clinical dental productivity rate amounted to 29.64 CHF/min (digital) and 24.37 CHF/min (conventional) [P = 0.002]. Overall, cost minimization analysis exhibited an 18% cost reduction within the digital process. CONCLUSION The digital workflow was more efficient than the established conventional pathway for implant-supported crowns in this investigation.
Resumo:
ROTEM(®) is considered a helpful point-of-care device to monitor blood coagulation. Centrally performed analysis is desirable but rapid transport of blood samples and real-time transmission of graphic results are an important prerequisite. The effect of sample transport through a pneumatic tube system on ROTEM(®) results is unknown. The aims of the present work were (i) to determine the influence of blood sample transport through a pneumatic tube system on ROTEM(®) parameters compared to manual transportation, and (ii) to verify whether graphic results can be transmitted on line via virtual network computing using local area network to the physician in charge of the patient.
Resumo:
Most available studies of interconnected matrix porosity of crystalline rocks are based on laboratory investigations; that is, work on samples that have undergone stress relaxation and were affected by drilling and sample preparation. The extrapolation of the results to in situ conditions is therefore associated with considerable uncertainty, and this was the motivation to conduct the ‘in situ Connected Porosity’ experiment at the Grimsel Test Site (Central Swiss Alps). An acrylic resin doped with fluorescent agents was used to impregnate the microporous granitic matrix in situ around an injection borehole, and samples were obtained by overcoring. The 3-D structure of the porespace, represented by microcracks, was studied by U-stage fluorescence microscopy. Petrophysical methods, including the determination of porosity, permeability and P -wave velocity, were also applied. Investigations were conducted both on samples that were impregnated in situ and on non-impregnated samples, so that natural features could be distinguished from artefacts. The investigated deformed granites display complex microcrack populations representing a polyphase deformation at varying conditions. The crack population is dominated by open cleavage cracks in mica and grain boundary cracks. The porosity of non-impregnated samples lies slightly above 1 per cent, which is 2–2.5 times higher than the in situ porosity obtained for impregnated samples. Measurements of seismic velocities (Vp ) on spherical rock samples as a function of confining pressure, spatial direction and water saturation for both non-impregnated and impregnated samples provide further constraints on the distinction between natural and induced crack types. The main conclusions are that (1) an interconnected network of microcracks exists in the whole granitic matrix, irrespective of the distance to ductile and brittle shear zones, and (2) conventional laboratory methods overestimate the matrix porosity. Calculations of contaminant transport through fractured media often rely on matrix diffusion as a retardation mechanism.
Resumo:
Spreading the PSF over a quite large amount of pixels is an increasingly used observing technique in order to reach extremely precise photometry, such as in the case of exoplanets searching and characterization via transits observations. A PSF top-hat profile helps to minimize the errors contribution due to the uncertainty on the knowledge of the detector flat field. This work has been carried out during the recent design study in the framework of the ESA small mission CHEOPS. Because of lack of perfect flat-fielding information, in the CHEOPS optics it is required to spread the light of a source into a well defined angular area, in a manner as uniform as possible. Furthermore this should be accomplished still retaining the features of a true focal plane onto the detector. In this way, for instance, the angular displacement on the focal plane is fully retained and in case of several stars in a field these look as separated as their distance is larger than the spreading size. An obvious way is to apply a defocus, while the presence of an intermediate pupil plane in the Back End Optics makes attractive to introduce here an optical device that is able to spread the light in a well defined manner, still retaining the direction of the chief ray hitting it. This can be accomplished through an holographic diffuser or through a lenslet array. Both techniques implement the concept of segmenting the pupil into several sub-zones where light is spread to a well defined angle. We present experimental results on how to deliver such PSF profile by mean of holographic diffuser and lenslet array. Both the devices are located in an intermediate pupil plane of a properly scaled laboratory setup mimicking the CHEOPS optical design configuration. © (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.