20 resultados para isospin dependent quantum molecular dynamics

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a molecular modeling study based on ab initio and classical molecular dynamics calculations, for the investigation of the tridimensional structure and supramolecular assembly formation of heptapyrenotide oligomers in water solution. Our calculations show that free oligomers self-assemble in helical structures characterized by an inner core formed by π- stacked pyrene units, and external grooves formed by the linker moieties. The coiling of the linkers has high ordering, dominated by hydrogen-bond interactions among the phosphate and amide groups. Our models support a mechanism of longitudinal supramolecular oligomerization based on interstrand pyrene intercalation. Only a minimal number of pyrene units intercalate at one end, favoring formation of very extended longitudinal chains, as also detected by AFM experiment. Our results provide a structural explanation of the mechanism of chirality amplification in 1:1 mixtures of standard heptapyrenotides and modified oligomers with covalently linked deoxycytidine, based on selective molecular recognition and binding of the nucleotide to the groove of the left-wound helix.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Peptide dendrimers are synthetic tree-like molecules composed of amino acids. There are at least two kinds of preferential structural behaviors exhibited by these molecules, which acquire either compact or noncompact shapes. However, the key structural determinants of such behaviors remained, until now, unstudied. Herein, we conduct a comprehensive investigation of the structural determinants of peptide dendrimers by employing long molecular dynamics simulations to characterize an extended set of third generation dendrimers. Our results clearly show that a trade-off between electrostatic effects and hydrogen bond formation controls structure acquisition in these systems. Moreover, by selectively changing the dendrimers charge we are able to manipulate the exhibited compactness. In contrast, the length of branching residues does not seem to be a major structural determinant. Our results are in accordance with the most recent experimental evidence and shed some light on the key molecular level interactions controlling structure acquisition in these systems. Thus, the results presented constitute valuable insights that can contribute to the development of truly tailor-made dendritic systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We used multiple sets of simulations both at the atomistic and coarse-grained level of resolution to investigate interaction and binding of α-tochoperol transfer protein (α-TTP) to phosphatidylinositol phosphate lipids (PIPs). Our calculations indicate that enrichment of membranes with such lipids facilitate membrane anchoring. Atomistic models suggest that PIP can be incorporated into the binding cavity of α-TTP and therefore confirm that such protein can work as lipid exchanger between the endosome and the plasma membrane. Comparison of the atomistic models of the α-TTP-PIPs complex with membrane-bound α-TTP revealed different roles for the various basic residues composing the basic patch that is key for the protein/ligand interaction. Such residues are of critical importance as several point mutations at their position lead to severe forms of ataxia with vitamin E deficiency (AVED) phenotypes. Specifically, R221 is main residue responsible for the stabilization of the complex. R68 and R192 exchange strong interactions in the protein or in the membrane complex only, suggesting that the two residues alternate contact formation, thus facilitating lipid flipping from the membrane into the protein cavity during the lipid exchange process. Finally, R59 shows weaker interactions with PIPs anyway with a clear preference for specific phosphorylation positions, hinting a role in early membrane selectivity for the protein. Altogether, our simulations reveal significant aspects at the atomistic scale of interactions of α-TTP with the plasma membrane and with PIP, providing clarifications on the mechanism of intracellular vitamin E trafficking and helping establishing the role of key residue for the functionality of α-TTP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Employing a scanning tunneling microscopy based beak junction technique and mechanically controlled break junction experiments, we investigated tolane (diphenylacetylene)-type single molecular junctions having four different anchoring groups (SH, pyridyl (PY), NH2, and CN) at a solid/liquid interface. The combination of current–distance and current–voltage measurements and their quantitative statistical analysis revealed the following sequence for junction formation probability and stability: PY > SH > NH2 > CN. For all single molecular junctions investigated, we observed the evolution through multiple junction configurations, with a particularly well-defined binding geometry for PY. The comparison of density functional theory type model calculations and molecular dynamics simulations with the experimental results revealed structure and mechanistic details of the evolution of the different types of (single) molecular junctions upon stretching quantitatively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of oligodeoxyribonucleotides and oligoribonucleotides containing single and multiple tricyclo(tc)-nucleosides in various arrangements were prepared and the thermal and thermodynamic transition profiles of duplexes with complementary DNA and RNA evaluated. Tc-residues aligned in a non-continuous fashion in an RNA strand significantly decrease affinity to complementary RNA and DNA, mostly as a consequence of a loss of pairing enthalpy DeltaH. Arranging the tc-residues in a continuous fashion rescues T(m) and leads to higher DNA and RNA affinity. Substitution of oligodeoxyribonucleotides in the same way causes much less differences in T(m) when paired to complementary DNA and leads to substantial increases in T(m) when paired to complementary RNA. CD-spectroscopic investigations in combination with molecular dynamics simulations of duplexes with single modifications show that tc-residues in the RNA backbone distinctly influence the conformation of the neighboring nucleotides forcing them into higher energy conformations, while tc-residues in the DNA backbone seem to have negligible influence on the nearest neighbor conformations. These results rationalize the observed affinity differences and are of relevance for the design of tc-DNA containing oligonucleotides for applications in antisense or RNAi therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present ab initio quantum calculation of the optical properties of formamide in vapor phase and in water solution. We employ time dependent density functional theory for the isolated molecule and many-body perturbation theory methods for the system in solution. An average over several molecular dynamics snapshots is performed to take into account the disorder of the liquid. We find that the excited stateproperties of the gas-phase formamide are strongly modified by the presence of the water solvent: the geometry of the molecule is distorted and the electronic and optical properties are severely modified. The important interaction among the formamide and the water molecules forces us to use fully quantum methods for the calculation of the excited stateproperties of this system. The excitonic wave function is localized both on the solute and on part of the solvent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Supramolecular two-dimensional engineering epitomizes the design of complex molecular architectures through recognition events in multicomponent self-assembly. Despite being the subject of in-depth experimental studies, such articulated phenomena have not been yet elucidated in time and space with atomic precision. Here we use atomistic molecular dynamics to simulate the recognition of complementary hydrogen-bonding modules forming 2D porous networks on graphite. We describe the transition path from the melt to the crystalline hexagonal phase and show that self-assembly proceeds through a series of intermediate states featuring a plethora of polygonal types. Finally, we design a novel bicomponent system possessing kinetically improved self-healing ability in silico, thus demonstrating that a priori engineering of 2D self-assembly is possible.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

microRNAs (miRNAs) are small non-coding RNAs that are frequently involved in carcinogenesis. Although many miRNAs form part of integrated networks, little information is available how they interact with each other to control cellular processes. miR-34a and miR-15a/16 are functionally related; they share common targets and control similar processes including G1-S cell cycle progression and apoptosis. The aim of this study was to investigate the combined action of miR-34a and miR-15a/16 in non-small cell lung cancer (NSCLC) cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Signal proteins are able to adapt their response to a change in the environment, governing in this way a broad variety of important cellular processes in living systems. While conventional molecular-dynamics (MD) techniques can be used to explore the early signaling pathway of these protein systems at atomistic resolution, the high computational costs limit their usefulness for the elucidation of the multiscale transduction dynamics of most signaling processes, occurring on experimental timescales. To cope with the problem, we present in this paper a novel multiscale-modeling method, based on a combination of the kinetic Monte-Carlo- and MD-technique, and demonstrate its suitability for investigating the signaling behavior of the photoswitch light-oxygen-voltage-2-Jα domain from Avena Sativa (AsLOV2-Jα) and an AsLOV2-Jα-regulated photoactivable Rac1-GTPase (PA-Rac1), recently employed to control the motility of cancer cells through light stimulus. More specifically, we show that their signaling pathways begin with a residual re-arrangement and subsequent H-bond formation of amino acids near to the flavin-mononucleotide chromophore, causing a coupling between β-strands and subsequent detachment of a peripheral α-helix from the AsLOV2-domain. In the case of the PA-Rac1 system we find that this latter process induces the release of the AsLOV2-inhibitor from the switchII-activation site of the GTPase, enabling signal activation through effector-protein binding. These applications demonstrate that our approach reliably reproduces the signaling pathways of complex signal proteins, ranging from nanoseconds up to seconds at affordable computational costs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since no single experimental or modeling technique provides data that allow a description of transport processes in clays and clay minerals at all relevant scales, several complementary approaches have to be combined to understand and explain the interplay between transport relevant phenomena. In this paper molecular dynamics simulations (MD) were used to investigate the mobility of water in the interlayer of montmorillonite (Mt), and to estimate the influence of mineral surfaces and interlayer ions on the water diffusion. Random Walk (RW) simulations based on a simplified representation of pore space in Mt were used to estimate and understand the effect of the arrangement of Mt particles on the meso- to macroscopic diffusivity of water. These theoretical calculations were complemented with quasielastic neutron scattering (QENS) measurements of aqueous diffusion in Mt with two pseudo-layers of water performed at four significantly different energy resolutions (i.e. observation times). The size of the interlayer and the size of Mt particles are two characteristic dimensions which determine the time dependent behavior of water diffusion in Mt. MD simulations show that at very short time scales water dynamics has the characteristic features of an oscillatory motion in the cage formed by neighbors in the first coordination shell. At longer time scales, the interaction of water with the surface determines the water dynamics, and the effect of confinement on the overall water mobility within the interlayer becomes evident. At time scales corresponding to an average water displacement equivalent to the average size of Mt particles, the effects of tortuosity are observed in the meso- to macroscopic pore scale simulations. Consistent with the picture obtained in the simulations, the QENS data can be described using a (local) 3D diffusion at short observation times, whereas at sufficiently long observation times a 2D diffusive motion is clearly observed. The effects of tortuosity measured in macroscopic tracer diffusion experiments are in qualitative agreement with RW simulations. By using experimental data to calibrate molecular and mesoscopic theoretical models, a consistent description of water mobility in clay minerals from the molecular to the macroscopic scale can be achieved. In turn, simulations help in choosing optimal conditions for the experimental measurements and the data interpretation. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The release of phosphate (Pi) is an important element in actomyosin function and has been shown to be accelerated by the binding of myosin to actin. To provide information about the structural elements important for Pi release, possible escape pathways from various isolated myosin II structures have been determined by molecular dynamics simulations designed for studying such slow processes. The residues forming the pathways were identified and their role was evaluated by mutant simulations. Pi release is slow in the pre-powerstroke structure, an important element in preventing the powerstroke prior to actin binding, and is much more rapid for Pi modeled into the post-rigor and rigor-like structures. The previously proposed backdoor route is dominant in the pre-powerstroke and post-rigor states, whereas a different path is most important in the rigor-like state. This finding suggests a mechanism for the actin-activated acceleration of Pi release.