86 resultados para human cancer genome project
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The growing knowledge on physiology, cell biology and biochemistry of the reproductive organs has provided many insights into molecular mechanisms that are required for successful reproduction. Research directed at the investigation of reproduction physiology in domestic animals was hampered in the past by a lack of species-specific genomic information. The genome sequences of dog, cattle and horse have become publicly available in 2005, 2006 and 2007 respectively. Although the gene content of mammalian genomes is generally very similar, genes involved in reproduction tend to be less conserved than the average mammalian gene. The availability of genome sequences provides a valuable resource to check whether any protein that may be known from human or mouse research is present in cattle and/or horse as well. Currently there are more than 200 genes known that are involved in the production of fertile sperm cells. Great progress has been made in the understanding of genetic aberrations that lead to male infertility. Additionally, the first genetic mechanisms are being discovered that contribute to the quantitative variation of fertility traits in fertile male animals. Here, I will review some selected aspects of genetic research in male fertility and offer some perspectives for the use of genomic sequence information.
Resumo:
Cupiennin 1a, a cytolytic peptide isolated from the venom of the spider Cupiennius salei, exhibits broad membranolytic activity towards bacteria, trypanosomes, and plasmodia, as well as human blood and cancer cells. In analysing the cytolytic activity of synthesised all-d- and all-l-cupiennin 1a towards pro- and eukaryotic cells, a stereospecific mode of membrane destruction could be excluded. The importance of negatively charged sialic acids on the outer leaflet of erythrocytes for the binding and haemolytic activity of l-cupiennin 1a was demonstrated. Reducing the overall negative charges of erythrocytes by partially removing their sialic acids or by protecting them with tri- or pentalysine results in reduced haemolytic activity of the peptide.
Resumo:
The insulin-like growth factor (IGF) signaling system plays a crucial role in human cancer and the IGF-1 receptor (IGF-1R) is an attractive drug target against which a variety of novel anti-tumor agents are being developed. Deregulation of the IGF signaling pathway frequently occurs in human cancer and involves the establishment of autocrine loops comprising IGF-1 or IGF-2 and/or IGF-1R over-expression. Epidemiologic studies have documented a link between elevated IGF levels and the development of solid tumors, such as breast, colon, and prostate cancer. Anti-cancer strategies targeting the IGF signaling system involve two main approaches, namely neutralizing antibodies and small molecule inhibitors of the IGF-1R kinase activity. There are numerous reports describing anti-tumor activity of these agents in pre-clinical models of major human cancers. In addition, multiple clinical trials have started to evaluate the safety and efficacy of selected IGF-1R inhibitors, in combination with standard chemotherapeutic regimens or other targeted agents in cancer patients. In this mini review, I will discuss the role of the IGF signaling system in human cancer and the main strategies which have been so far evaluated to target the IGF-1R.
Resumo:
Recombinant human tumour necrosis factor (TNF) has a selective effect on angiogenic vessels in tumours. Given that it induces vasoplegia, its clinical use has been limited to administration through isolated limb perfusion (ILP) for regionally advanced melanomas and soft tissue sarcomas of the limbs. When combined with the alkylating agent melphalan, a single ILP produces a very high objective response rate. In melanoma, the complete response (CR) rate is around 80% and the overall objective response rate greater than 90%. In soft tissue sarcomas that are inextirpable, ILP is a neoadjuvant treatment resulting in limb salvage in 80% of the cases. The CR rate averages 20% and the objective response rate is around 80%. The mode of action of TNF-based ILP involves two distinct and successive effects on the tumour-associated vasculature: first, an increase in endothelium permeability leading to improved chemotherapy penetration within the tumour tissue, and second, a selective killing of angiogenic endothelial cells resulting in tumour vessel destruction. The mechanism whereby these events occur involves rapid (of the order of minutes) perturbation of cell-cell adhesive junctions and inhibition of alphavbeta3 integrin signalling in tumour-associated vessels, followed by massive death of endothelial cells and tumour vascular collapse 24 hours later. New, promising approaches for the systemic use of TNF in cancer therapy include TNF targeting by means of single chain antibodies or endothelial cell ligands, or combined administration with drugs perturbing integrin-dependent signalling and sensitizing angiogenic endothelial cells to TNF-induced death.
Resumo:
Many peptide hormone receptors are over-expressed in human cancer, permitting an in vivo targeting of tumors for diagnostic and therapeutic purposes. NPY receptors are novel and promising candidates in this field. Using in vitro receptor autoradiography, Y1 and Y2 receptors have been found to be expressed in breast carcinomas, adrenal gland and related tumors, renal cell carcinomas, and ovarian cancers in both tumor cells and tumor-associated blood vessels. Pathophysiologically, tumoral NPY receptors may be activated by endogenous NPY released from intratumoral nerve fibers or tumor cells themselves, and mediate NPY effects on tumor cell proliferation and tumoral blood supply. Clinically, tumoral NPY receptors may be targeted with NPY analogs coupled with adequate radionuclides or cytotoxic agents for a scintigraphic tumor imaging and/or tumor therapy.
Resumo:
The domestic dog offers a unique opportunity to explore the genetic basis of disease, morphology and behaviour. Humans share many diseases with our canine companions, making dogs an ideal model organism for comparative disease genetics. Using newly developed resources, genome-wide association studies in dog breeds are proving to be exceptionally powerful. Towards this aim, veterinarians and geneticists from 12 European countries are collaborating to collect and analyse the DNA from large cohorts of dogs suffering from a range of carefully defined diseases of relevance to human health. This project, named LUPA, has already delivered considerable results. The consortium has collaborated to develop a new high density single nucleotide polymorphism (SNP) array. Mutations for four monogenic diseases have been identified and the information has been utilised to find mutations in human patients. Several complex diseases have been mapped and fine mapping is underway. These findings should ultimately lead to a better understanding of the molecular mechanisms underlying complex diseases in both humans and their best friend.
Resumo:
Telomeres and telomerase play essential roles in the regulation of the lifespan of human cells. While normal human somatic cells do not or only transiently express telomerase and therefore shorten their telomeres with each cell division, most human cancer cells typically express high levels of telomerase and show unlimited cell proliferation. High telomerase expression allows cells to proliferate and expand long-term and therefore supports tumor growth. Owing to the high expression and its role, telomerase has become an attractive diagnostic and therapeutic cancer target. Imetelstat (GRN163L) is a potent and specific telomerase inhibitor and so far the only drug of its class in clinical trials. Here, we report on the structure and the mechanism of action of imetelstat as well as about the preclinical and clinical data and future prospects using imetelstat in cancer therapy.
Resumo:
The current status of child and adolescent psychiatric genetics appears promising in light of the initiation of genome-wide association studies (GWAS) for diverse polygenic disorders and the molecular elucidation of monogenic Rett syndrome, for which recent functional studies provide hope for pharmacological treatment strategies. Within the last 50 years, tremendous progress has been made in linking genetic variation to behavioral phenotypes and psychiatric disorders. We summarize the major findings of the Human Genome Project and dwell on largely unsuccessful candidate gene and linkage studies. GWAS for the first time offer the possibility to detect single nucleotide polymorphisms and copy number variants without a priori hypotheses as to their molecular etiology. At the same time it is becoming increasingly clear that very large sample sizes are required in order to enable genome wide significant findings, thus necessitating further large-scaled ascertainment schemes for the successful elucidation of the molecular genetics of childhood and adolescent psychiatric disorders. We conclude by reflecting on different scenarios for future research into the molecular basis of early onset psychiatric disorders. This review represents the introductory article of this special issue of the European Child and Adolescent Psychiatry.
Resumo:
The synthesis and preclinical evaluation of [(99m)Tc]Demomedin C in GRPR-expressing models are reported. Demomedin C resulted by coupling a Boc-protected N(4)-chelator to neuromedin C (human GRP(18-27)), which, after (99m)Tc-labeling, afforded [(99m)Tc]Demomedin C. Demomedin C showed high affinity and selectivity for the GRPR during receptor autoradiography on human cancer samples (IC(50) in nM: GRPR, 1.4 ± 0.2; NMBR, 106 ± 18; and BB(3)R, >1000). It triggered GRPR internalization in HEK-GRPR cells and Ca(2+) release in PC-3 cells (EC(50) = 1.3 nM). [(99m)Tc]Demomedin C rapidly and specifically internalized at 37 °C in PC-3 cells and was stable in mouse plasma. [(99m)Tc]Demomedin C efficiently and specifically localized in human PC-3 implants in mice (9.84 ± 0.81%ID/g at 1 h pi; 6.36 ± 0.85%ID/g at 4 h pi, and 0.41 ± 0.07%ID/g at 4 h pi block). Thus, human GRP-based radioligands, such as [(99m)Tc]Demomedin C, can successfully target GRPR-expressing human tumors in vivo while displaying attractive biological features--e.g. higher GRPR-selectivity--vs their frog-homologues.
Resumo:
BACKGROUND/AIMS: Gut hormone receptors are over-expressed in human cancer and allow receptor-targeted tumor imaging and therapy. A novel promising receptor for these purposes is the secretin receptor. The secretin receptor expression was investigated in the human liver because the liver is a physiological secretin target and because novel diagnostic and treatment modalities are needed for liver cancer. METHODS: Nineteen normal livers, 10 cirrhotic livers, 35 cholangiocarcinomas, and 45 hepatocellular carcinomas were investigated for secretin receptor expression by in vitro receptor autoradiography using (125)I-[Tyr(10)] rat secretin and, in selected cases, for secretin receptor mRNA by RT-PCR. RESULTS: Secretin receptors were present in normal bile ducts and ductules, but not in hepatocytes. A significant receptor up-regulation was observed in ductular reaction in liver cirrhosis. Twenty-two (63%) cholangiocarcinomas were positive for secretin receptors, while hepatocellular carcinomas were negative. RT-PCR revealed wild-type receptor mRNA in the non-neoplastic liver, wild-type and spliced variant receptor mRNAs in cholangiocarcinomas found receptor positive in autoradiography experiments, and no receptor transcripts in autoradiographically negative cholangiocarcinomas. CONCLUSIONS: The expression of secretin receptors in the biliary tract is the molecular basis of the secretin-induced bicarbonate-rich choleresis in man. The high receptor expression in cholangiocarcinomas may be used for in vivo secretin receptor-targeting of these tumors and for the differential diagnosis with hepatocellular carcinoma.
Resumo:
Gastrointestinal peptide hormone receptors, like somatostatin receptors, are often overexpressed in human cancer, allowing receptor-targeted tumor imaging and therapy. A novel candidate for these applications is the secretin receptor recently identified in pancreatic and cholangiocellular carcinomas. In the present study, secretin receptors were assessed in a non-gastrointestinal tissue, the human lung. Non-small-cell lung cancers (n=26), small-cell lung cancers (n=10), bronchopulmonary carcinoid tumors (n=29), and non-neoplastic lung (n=46) were investigated for secretin receptor protein expression with in vitro receptor autoradiography, using (125)I-[Tyr(10)] rat secretin and for secretin receptor transcripts with RT-PCR. Secretin receptor protein expression was found in 62% of bronchopulmonary carcinoids in moderate to high density, in 12% of non-small cell lung cancers in low density, but not in small cell lung cancers. In tumors found to be secretin receptor positive by autoradiography, RT-PCR revealed transcripts for the wild-type secretin receptor and for novel secretin receptor splice variants. In the non-neoplastic lung, secretin receptor protein expression was observed in low density along the alveolar septa in direct tumor vicinity in cases of acute inflammation, but not in histologically normal lung. In the autoradiographically positive peritumoral lung, RT-PCR showed transcripts for the wild-type secretin receptor and for a secretin receptor spliceoform different from those occurring in lung and gut tumors. In conclusion, secretin receptors are new markers for bronchopulmonary carcinoid tumors, and represent the molecular basis for an in vivo targeting of carcinoid tumors for diagnosis and therapy. Furthermore, secretin receptors may play a role in peritumoral lung pathophysiology. Secretin receptor mis-splicing specifically occurs in tumor and non-tumor lung pathology.
Resumo:
In the late 1990s, the identification of transporters and transporter-associated genes progressed substantially due to the development of new cloning approaches such as expression cloning and, subsequently, to the implementation of the human genome project. Since then, the role of many transporter genes in human diseases has been elucidated. In this overview, we focus on inherited disorders of epithelial transporters. In particular, we review genetic defects of the genes encoding glucose transporters (SLC2 and SLC5 families) and amino acid transporters (SLC1, SLC3, SLC6 and SLC7 families).
Resumo:
We report the expression of a linear reporter construct in isolated human mitochondria. The reporter construct contained the entire human D-Loop with adjacent tRNA (MTT) genes (mt.15956-647), the human ND1 gene with an in frame GFP gene and adjacent endogenous MTT genes and heterologous rat MTT genes. Natural competence of isolated human mitochondria of HepG2 cells was used to import reporter constructs. The import efficiency of various fluorescently labelled PCR-generated import substrates in the range of 250bp up to 3.5kb was assessed by quantitative PCR and evaluated by confocal microscopy. Heterologous expression of the imported construct was confirmed at RNA level by a circular RNA (cRNA)-RT-PCR assay for the expression of tRNAs and by in organello [α-(32)P]-UTP labelling and subsequent hybridisation to reporter-specific sequences for monitoring mRNA expression. Heterologous expression of rat mitochondrial tRNA(Leu(UUR)) (rMT-TL1) was confirmed by co-/post-transcriptional trinucleotide (CCA) addition. Interestingly, the rat-specific MT-TL1 was correctly processed in isolated human mitochondria at the 3' end, but showed an aberrant 5' end processing. Correct 3' end processing of the heterologous expressed mitochondrial rat tRNA(Ser2) (MT-TS2) was detected. These findings demonstrate the feasibility of genetic manipulation of human mitochondria, providing a tool for characterisation of cis-acting elements of the human mitochondrial genome and for the study of human mitochondrial tRNA processing in organello.
Resumo:
Metaplastic breast carcinoma (MBC) is a rare histological breast cancer subtype characterized by mesenchymal elements and poor clinical outcome. A large fraction of MBCs harbor defects in breast cancer 1 (BRCA1). As BRCA1 deficiency sensitizes tumors to DNA cross-linking agents and poly(ADP-ribose) polymerase (PARP) inhibitors, we sought to investigate the response of BRCA1-deficient MBCs to the PARP inhibitor olaparib. To this end, we established a genetically engineered mouse model (GEMM) for BRCA1-deficient MBC by introducing the MET proto-oncogene into a BRCA1-associated breast cancer model, using our novel female GEMM ES cell (ESC) pipeline. In contrast to carcinomas, BRCA1-deficient mouse carcinosarcomas resembling MBC show intrinsic resistance to olaparib caused by increased P-glycoprotein (Pgp) drug efflux transporter expression. Indeed, resistance could be circumvented by using another PARP inhibitor, AZD2461, which is a poor Pgp substrate. These preclinical findings suggest that patients with BRCA1-associated MBC may show poor response to olaparib and illustrate the value of GEMM-ESC models of human cancer for evaluation of novel therapeutics.
Resumo:
FTY720 sequesters lymphocytes in secondary lymphoid organs through effects on sphingosine-1-phosphate (S1P) receptors. However, at higher doses than are required for immunosuppression, FTY720 also functions as an anticancer agent in multiple animal models. Our published work indicates that the anticancer effects of FTY720 do not depend on actions at S1P receptors but instead stem from FTY720s ability to restrict access to extracellular nutrients by down-regulating nutrient transporter proteins. This result was significant because S1P receptor activation is responsible for FTY720s dose-limiting toxicity, bradycardia, that prevents its use in cancer patients. Here, we describe diastereomeric and enantiomeric 3- and 4-C-aryl 2-hydroxymethyl pyrrolidines that are more active than the previously known analogues. Of importance is that these compounds fail to activate S1P1 or S1P3 receptors in vivo but retain inhibitory effects on nutrient transporter proteins and anticancer activity in solid tumor xenograft models. Our studies reaffirm that the anticancer activity of FTY720 does not depend upon S1P receptor activation and uphold the promise of using S1P receptor-inactive azacyclic FTY720 analogues in human cancer patients.