74 resultados para host-pathogen interactions

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Theileria parasites infect and transform cells of the ruminant immune system. Continuous proliferation and survival of Theileria-transformed cells involves the well-orchestrated activation of several host-cell signalling pathways. Constitutive NF-kappa B (nuclear factor kappa B) activation is accomplished by recruiting the IKK (I kappa B kinase) complex, a central regulator of NF-kappa B pathways, to the surface of the transforming schizont, where it becomes permanently activated. Constitutive activation of the PI-3K-PKB [phosphoinositide 3-kinase-(Akt) protein kinase B] pathway is likely to be indirect and is essential for continuous proliferation. Theileria-transformed T cells express a range of anti-apoptotic proteins that can be expected to provide protection against apoptosis induced by death receptors, as well as cellular control mechanisms that are mobilised to eliminate cells that entered a cycle of uncontrolled proliferation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chronic infection and inflammation are defining characteristics of cystic fibrosis (CF) airway disease. Conditions within the airways of patients living with CF are conducive to colonisation by a variety of opportunistic bacterial, viral and fungal pathogens. Improved molecular identification of microorganisms has begun to emphasise the polymicrobial nature of infections in the CF airway microenvironment. Changes to CF airway physiology through loss of cystic fibrosis transmembrane conductance regulator functionality result in a wide range of immune dysfunctions, which permit pathogen colonisation and persistence. This review will summarise the current understanding of how CF pathogens infect, interact with and evade the CF host.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In Echinococcus multilocularis metacestodes, the surface-associated and highly glycosylated laminated layer, and molecules associated with this structure, is believed to be involved in modulating the host-parasite interface. We report on the molecular and functional characterisation of E. multilocularis phosphoglucose isomerase (EmPGI), which is a component of this laminated layer. The EmPGI amino acid sequence is virtually identical to that of its homologue in Echinococcus granulosus, and shares 64% identity and 86% similarity with human PGI. Mammalian PGI is a multi-functional protein which, besides its glycolytic function, can also act as a cytokine, growth factor and inducer of angiogenesis, and plays a role in tumour growth, development and metastasis formation. Recombinant EmPGI (recEmPGI) is also functionally active as a glycolytic enzyme and was found to be present, besides the laminated layer, in vesicle fluid and in germinal layer cell extracts. EmPGI is released from metacestodes and induces a humoral immune response in experimentally infected mice, and vaccination of mice with recEmPGI renders these mice more resistant towards secondary challenge infection, indicating that EmPGI plays an important role in parasite development and/or in modulating the host-parasite relationship. We show that recEmPGI stimulates the growth of isolated E. multilocularis germinal layer cells in vitro and selectively stimulates the proliferation of bovine adrenal cortex endothelial cells but not of human fibroblasts and rat hepatocytes. Thus, besides its role in glycolysis, EmPGI could also act as a factor that stimulates parasite growth and potentially induces the formation of novel blood vessels around the developing metacestode in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Crohn's disease and ulcerative colitis, the two common forms of inflammatory bowel disease (IBD), affect over 2.5 million people of European ancestry, with rising prevalence in other populations. Genome-wide association studies and subsequent meta-analyses of these two diseases as separate phenotypes have implicated previously unsuspected mechanisms, such as autophagy, in their pathogenesis and showed that some IBD loci are shared with other inflammatory diseases. Here we expand on the knowledge of relevant pathways by undertaking a meta-analysis of Crohn's disease and ulcerative colitis genome-wide association scans, followed by extensive validation of significant findings, with a combined total of more than 75,000 cases and controls. We identify 71 new associations, for a total of 163 IBD loci, that meet genome-wide significance thresholds. Most loci contribute to both phenotypes, and both directional (consistently favouring one allele over the course of human history) and balancing (favouring the retention of both alleles within populations) selection effects are evident. Many IBD loci are also implicated in other immune-mediated disorders, most notably with ankylosing spondylitis and psoriasis. We also observe considerable overlap between susceptibility loci for IBD and mycobacterial infection. Gene co-expression network analysis emphasizes this relationship, with pathways shared between host responses to mycobacteria and those predisposing to IBD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Terminal sialic acid residues on surface-associated glycoconjugates mediate host cell interactions of many pathogens. Addition of sialic acid-rich fetuin enhanced, and the presence of the sialidiase inhibitor 2-deoxy-2,3-dehydro-N-acetylneuraminic acid reduced, the physical interaction of Neospora caninum tachyzoites and bradyzoites with Vero cell monolayers. Thus, Neospora extracts were subjected to fetuin-agarose affinity chromatography in order to isolate components potentially interacting with sialic acid residues. SDS-PAGE and silver staining of the fetuin binding fraction revealed the presence of a single protein band of approximately 65 kDa, subsequently named NcFBP (Neospora caninum fetuin-binding protein), which was localized at the apical tip of the tachyzoites and was continuously released into the surrounding medium in a temperature-independent manner. NcFBP readily interacted with Vero cells and bound to chondroitin sulfate A and C, and anti-NcFBP antibodies interfered in tachyzoite adhesion to host cell monolayers. In additon, analysis of the fetuin binding fraction by gelatin substrate zymography was performed, and demonstrated the presence of two bands of 96 and 140 kDa exhibiting metalloprotease-activity. The metalloprotease activity readily degraded glycosylated proteins such as fetuin and bovine immunoglobulin G heavy chain, whereas non-glycosylated proteins such as bovine serum albumin and immunoglobulin G light chain were not affected. These findings suggest that the fetuin-binding fraction of Neospora caninum tachyzoites contains components that could be potentially involved in host-parasite interactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The phylogeographic population structure of Mycobacterium tuberculosis suggests local adaptation to sympatric human populations. We hypothesized that HIV infection, which induces immunodeficiency, will alter the sympatric relationship between M. tuberculosis and its human host. To test this hypothesis, we performed a nine-year nation-wide molecular-epidemiological study of HIV-infected and HIV-negative patients with tuberculosis (TB) between 2000 and 2008 in Switzerland. We analyzed 518 TB patients of whom 112 (21.6%) were HIV-infected and 233 (45.0%) were born in Europe. We found that among European-born TB patients, recent transmission was more likely to occur in sympatric compared to allopatric host-pathogen combinations (adjusted odds ratio [OR] 7.5, 95% confidence interval [95% CI] 1.21-infinity, p = 0.03). HIV infection was significantly associated with TB caused by an allopatric (as opposed to sympatric) M. tuberculosis lineage (OR 7.0, 95% CI 2.5-19.1, p<0.0001). This association remained when adjusting for frequent travelling, contact with foreigners, age, sex, and country of birth (adjusted OR 5.6, 95% CI 1.5-20.8, p = 0.01). Moreover, it became stronger with greater immunosuppression as defined by CD4 T-cell depletion and was not the result of increased social mixing in HIV-infected patients. Our observation was replicated in a second independent panel of 440 M. tuberculosis strains collected during a population-based study in the Canton of Bern between 1991 and 2011. In summary, these findings support a model for TB in which the stable relationship between the human host and its locally adapted M. tuberculosis is disrupted by HIV infection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neospora caninum is an apicomplexan parasite which has emerged as an important cause of bovine abortion worldwide. Abortion is usually triggered by reactivation of dormant bradyzoites during pregnancy and subsequent congenital infection of the foetus, where the central nervous system appears to be most frequently affected. We here report on an organotypic tissue culture model for Neospora infection which can be used to study certain aspects of the cerebral phase of neosporosis within the context of a three-dimensionally organised neuronal network. Organotypic slice cultures of rat cortical tissue were infected with N. caninum tachyzoites, and the kinetics of parasite proliferation, as well as the proliferation-inhibitory effect of interferon-gamma (IFN-gamma), were monitored by either immunofluorescence, transmission electron microscopy, and a quantitative PCR-assay using the LightCycler instrument, respectively. In addition, the neuronal cytoskeletal elements, namely glial acidic protein filaments as well as actin microfilament bundles were shown to be largely colocalising with the pseudocyst periphery. This organotypic culture model for cerebral neosporosis provides a system, which is useful to study the proliferation, ultrastructural characteristics, development, and the interactions of N. caninum within the context of neuronal tissue, which at the same time can be modulated and influenced under controlled conditions, and will be useful in the future to gain more information on the cerebral phase of neosporosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Genomic approaches continue to provide unprecedented insight into the microbiome, yet host immune interactions with diverse microbiota can be difficult to study. We therefore generated a microbial microarray containing defined antigens isolated from a broad range of microbial flora to examine adaptive and innate immunity. Serological studies with this microarray show that immunoglobulins from multiple mammalian species have unique patterns of reactivity, whereas exposure of animals to distinct microbes induces specific serological recognition. Although adaptive immunity exhibited plasticity toward microbial antigens, immunological tolerance limits reactivity toward self. We discovered that several innate immune galectins show specific recognition of microbes that express self-like antigens, leading to direct killing of a broad range of Gram-negative and Gram-positive microbes. Thus, host protection against microbes seems to represent a balance between adaptive and innate immunity to defend against evolving antigenic determinants while protecting against molecular mimicry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neutrophils, the most abundant human immune cells, are rapidly recruited to sites of infection, where they fulfill their life-saving antimicrobial functions. While traditionally regarded as short-lived phagocytes, recent findings on long-term survival, neutrophil extracellular trap (NET) formation, heterogeneity and plasticity, suppressive functions, and tissue injury have expanded our understanding of their diverse role in infection and inflammation. This review summarises our current understanding of neutrophils in host-pathogen interactions and disease involvement, illustrating the versatility and plasticity of the neutrophil, moving between host defence, immune modulation, and tissue damage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Apicomplexan parasites possess an apical complex that is composed of two secretory organelles recognized as micronemes and rhoptries. Rhoptry contents are secreted into the parasitophorous vacuole during the host cell invasion process. Several rhoptry proteins have been identified in Toxoplasma gondii and seem to be involved in host-pathogen interactions and some of them are considered to be important virulence factors. Only one rhoptry protein, NcROP2, has been identified and extensively characterized in the closely related parasite Neospora caninum, and this has showed immunoprotective properties. Thus, with the aim of increasing knowledge of the rhoptry protein repertoire in N. caninum, a subcellular fractionation of tachyzoites was performed to obtain fractions enriched for this secretory organelle. 2-D SDS-PAGE followed by MS and LC/MS-MS were applied for fraction analysis and 8 potential novel rhoptry components (NcROP1, 5, 8, 30 and NcRON2, 3, 4, 8) and several kinases, proteases and phosphatases proteins were identified with a high homology to those previously found in T. gondii. Their existence in N. caninum tachyzoites suggests their involvement in similar events or pathways that occur in T. gondii. These novel proteins may be considered as targets that could be useful in the future development of immunoprophylactic measures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Central nervous system (CNS) infections in ruminant livestock, such as listeriosis, are of major concern for veterinary and public health. To date, no host-specific in vitro models for ruminant CNS infections are available. Here, we established and evaluated the suitability of organotypic brain-slices of ruminant origin as in vitro model to study mechanisms of Listeria monocytogenes CNS infection. Ruminants are frequently affected by fatal listeric rhombencephalitis that closely resembles the same condition occurring in humans. Better insight into host-pathogen interactions in ruminants is therefore of interest, not only from a veterinary but also from a public health perspective. Brains were obtained at the slaughterhouse, and hippocampal and cerebellar brain-slices were cultured up to 49 days. Viability as well as the composition of cell populations was assessed weekly. Viable neurons, astrocytes, microglia and oligodendrocytes were observed up to 49 days in vitro. Slice cultures were infected with L. monocytogenes, and infection kinetics were monitored. Infected brain cells were identified by double immunofluorescence, and results were compared to natural cases of listeric rhombencephalitis. Similar to the natural infection, infected brain-slices showed focal replication of L. monocytogenes and bacteria were predominantly observed in microglia, but also in astrocytes, and associated with axons. These results demonstrate that organotypic brain-slice cultures of bovine origin survive for extended periods and can be infected easily with L. monocytogenes. Therefore, they are a suitable model to study aspects of host-pathogen interaction in listeric encephalitis and potentially in other neuroinfectious diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many mechanisms involved in the pathogenesis of chronic enteropathies or host-pathogen interactions in canine intestine have not been elucidated so far. Next to the clinical and in vivo research tools, an in vitro model of canine intestinal cell culture would be very helpful for studies at the cellular level. Therefore, the purpose of this study was to establish and characterize a primary canine duodenal epithelial cell culture. Neonatal duodenum was disrupted with trypsin-ethylenediaminetetraacetic acid (EDTA) and the mucosa scraped off and digested with collagenase and dispase. After centrifugation on a 2% sorbitol gradient, the cells were incubated at 37 degrees C in OptiMEM supplemented with Primocin, epidermal growth factor, insulin, hydrocortisone, and 10% fetal calf serum (FCS). After 24 h, the FCS concentration was reduced to 2.5%, and the temperature decreased to 33 degrees C. With this method, the cultures were growing to confluent monolayers within 5-6 d and remained viable for an average of 2 wk. Their epithelial nature was confirmed by electron microscopy and immunofluorescence staining using antibodies directed against specific cytokeratins, desmosomes, and tight junctions. The intestinal cells proliferated, as evidenced by immunolabeling with a Ki-67 antibody, and cryptal cell subpopulations could be identified. Furthermore, alkaline phosphatase and sucrase activity were detected.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: The outer membrane protein M35 is a conserved porin of type 1 strains of the respiratory pathogen Moraxella catarrhalis. It was previously shown that M35 is involved in the uptake of essential nutrients required for bacterial growth and for nasal colonization in mice. The aim of this study was (i) to characterize the potential roles of M35 in the host-pathogen interactions considering the known multifunctionality of porins and (ii) to characterize the degree of conservation in the phylogenetic older subpopulation (type 2) of M. catarrhalis. RESULTS: Isogenic m35 mutants of the type 1 strains O35E, 300 and 415 were tested for their antimicrobial susceptibility against 15 different agents. Differences in the MIC (Minimum Inhibitory Concentration) between wild-type and mutant strains were found for eight antibiotics. For ampicillin and amoxicillin, we observed a statistically significant 2.5 to 2.9-fold MIC increase (p < 0.03) in the m35 mutants. Immunoblot analysis demonstrated that human saliva contains anti-M35 IgA. Wild-type strains and their respective m35 mutants were indistinguishable with respect to the phenotypes of autoagglutination, serum resistance, iron acquisition from human lactoferrin, adherence to and invasion of respiratory tract epithelial cells, and proinflammatory stimulation of human monocytes. DNA sequencing of m35 from the phylogenetic subpopulation type 2 strain 287 revealed 94.2% and 92.8% identity on the DNA and amino acid levels, respectively, in comparison with type 1 strains. CONCLUSION: The increase in MIC for ampicillin and amoxicillin, respectively, in the M35-deficient mutants indicates that this porin affects the outer membrane permeability for aminopenicillins in a clinically relevant manner. The presence of IgA antibodies in healthy human donors indicates that M35 is expressed in vivo and recognized as a mucosal antigen by the human host. However, immunoblot analysis of human saliva suggests the possibility of antigenic variation of immunoreactive epitopes, which warrants further analysis before M35 can be considered a potential vaccine candidate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The apicomplexan parasite, Theileria annulata, is the causative agent of tropical theileriosis, a devastating lymphoproliferative disease of cattle. The schizont stage transforms bovine leukocytes and provides an intriguing model to study host/pathogen interactions. The genome of T. annulata has been sequenced and transcriptomic data are rapidly accumulating. In contrast, little is known about the proteome of the schizont, the pathogenic, transforming life cycle stage of the parasite. Using one-dimensional (1-D) gel LC-MS/MS, a proteomic analysis of purified T. annulata schizonts was carried out. In whole parasite lysates, 645 proteins were identified. Proteins with transmembrane domains (TMDs) were under-represented and no proteins with more than four TMDs could be detected. To tackle this problem, Triton X-114 treatment was applied, which facilitates the extraction of membrane proteins, followed by 1-D gel LC-MS/MS. This resulted in the identification of an additional 153 proteins. Half of those had one or more TMD and 30 proteins with more than four TMDs were identified. This demonstrates that Triton X-114 treatment can provide a valuable additional tool for the identification of new membrane proteins in proteomic studies. With two exceptions, all proteins involved in glycolysis and the citric acid cycle were identified. For at least 29% of identified proteins, the corresponding transcripts were not present in the existing expressed sequence tag databases. The proteomics data were integrated into the publicly accessible database resource at EuPathDB (www.eupathdb.org) so that mass spectrometry-based protein expression evidence for T. annulata can be queried alongside transcriptional and other genomics data available for these parasites.