264 resultados para distal radial fractures
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Background Operative fixation of intraarticular distal radius fractures is increasingly common. A greater understanding of fracture patterns will aid surgical fixation strategy. Previous studies have suggested that ligamentous insertions may less commonly be involved, but these have included heterogeneous groups of fractures and have not addressed Lister's tubercle. Purpose We hypothesize that fracture lines of distal radial intraarticular 2-part fractures have reproducible patterns. They propagate through the cortical bone between ligament origins and do not involve Lister's tubercle. Methods Axial CT scans of two-part intraarticular distal radius fractures were assessed independently by two examiners. The fractures were mapped onto a grid and the cortical breaches expressed as a percentile of the total radial width or length. The cortical breaches were compared with the ligamentous insertions on the distal and Lister's tubercle. Associated injuries were also documented. Results The cortical breaches occurred between the ligamentous insertions in 85%. Lister's tubercle was not involved in 95% of the fractures. Three major fracture patterns emerged: radial styloid, dorsal, and volar. Each major pattern had two subtypes. Associated injuries were common. Scapholunate dissociation was associated with all types, not just the radial styloid fracture pattern. Conclusions The fracture patterns of two-part intraarticular fractures mostly involved the interligamentous zones. Three major groups were identified: dorsal, volar, and radial styloid. Lister's tubercle was preserved with fractures tending to propagate radial or ulnar to this structure. We suggest conceptualizing fracture fragments as osseo-ligamentous units to aid prediction of fracture patterns and associated injury. Study Design Diagnostic III Level of Evidence 3.
Resumo:
OBJECTIVES: We sought to compare the diagnostic performance of screen-film radiography, storage-phosphor radiography, and a flat-panel detector system in detecting forearm fractures and to classify distal radius fractures according to the Müller-AO and Frykman classifications compared with the true extent, depicted by anatomic preparation. MATERIALS AND METHODS: A total of 71 cadaver arms were fractured in a material testing machine creating different fractures of the radius and ulna as well as of the carpal bones. Radiographs of the complete forearm were evaluated by 3 radiologists, and anatomic preparation was used as standard of reference in a receiver operating curve analysis. RESULTS: The highest diagnostic performance was obtained for the detection of distal radius fractures with area under the receiver operating curve (AUC) values of 0.959 for screen-film radiography, 0.966 for storage-phosphor radiography, and 0.971 for the flat-panel detector system (P > 0.05). Exact classification was slightly better for the Frykman (kappa values of 0.457-0.478) compared with the Müller-AO classification (kappa values of 0.404-0.447), but agreement can be considered as moderate for both classifications. CONCLUSIONS: The 3 imaging systems showed a comparable diagnostic performance in detecting forearm fractures. A high diagnostic performance was demonstrated for distal radius fractures and conventional radiography can be routinely performed for fracture detection. However, compared with anatomic preparation, depiction of the true extent of distal radius fractures was limited and the severity of distal radius fractures tends to be underestimated.
Resumo:
Background Understanding the anatomy of the ligaments of the distal radius aids in the surgical repair of ligamentous injuries and the prediction of intraarticular fracture patterns. Purposes (1) to measure the horizontal and vertical distances of the origins of the radiocarpal ligaments from the most ulnar corner of the sigmoid notch and the joint line, respectively; and (2) to express them as a percentile of the total width of the bony distal radius. Methods We dissected 8 cadaveric specimens and identified the dorsal radiocarpal, radioscaphocapitate, and the long and short radiolunate ligaments. Results The dorsal radiocarpal ligament attached from the 16th to the 52nd percentile of the radial width. The radioscaphocapitate ligament attached around the radial styloid from the 86th percentile volarly to the 87th percentile dorsally. The long radiolunate ligament attached from the 59th to the 85th percentile, and the short radiolunate ligament attached from the 14th to the 41st percentile. Discussion There was a positive correlation between the radial width and the horizontal distance of the ligaments from the sigmoid notch. These findings may aid individualized surgical repair or reconstruction adjusted to patient size and enable further standardized research on distal radial fractures and their relationship with radiocarpal ligaments.
Resumo:
The first objective of this study was to determine normative digital X-ray radiogrammetry (DXR) values, based on original digital images, in a pediatric population (aged 6-18 years). The second aim was to compare these reference data with patients suffering from distal radius fractures, whereas both cohorts originated from the same geographical region and were evaluated using the same technical parameters as well as inclusion and exclusion criteria. DXR-BMD and DXR-MCI of the metacarpal bones II-IV were assessed on standardized digital hand radiographs, without printing or scanning procedures. DXR parameters were estimated separately by gender and among six age groups; values in the fracture group were compared to age- and gender-matched normative data using Student's t tests and Z scores. In the reference cohort (150 boys, 138 girls), gender differences were found in bone mineral density (DXR-BMD), with higher values for girls from 11 to 14 years and for boys from 15 to 18 years (p < 0.05). Girls had higher normative metacarpal index (DXR-MCI) values than boys, with significant differences at 11-14 years (p < 0.05). In the case-control investigation, the fracture group (95 boys, 69 girls) presented lower DXR-BMD at 15-18 years in boys and 13-16 years in girls vs. the reference cohort (p < 0.05); DXR-MCI was lower at 11-18 years in boys and 11-16 years in girls (p < 0.05). Mean Z scores in the fracture group for DXR-BMD were -0.42 (boys) and -0.46 (girls), and for DXR-MCI were -0.51 (boys) and -0.53 (girls). These findings indicate that the fully digital DXR technique can be accurately applied in pediatric populations ≥ 6 years of age. The lower DXR-BMD and DXR-MCI values in the fracture group suggest promising early identification of individuals with increased fracture risk, without the need for additional radiation exposure, enabling the initiation of prevention strategies to possibly reduce the incidence of osteoporosis later in life.
Resumo:
OBJECTIVE: Mechanical evaluation of a novel screw position used for repair in a type III distal phalanx fracture model and assessment of solar canal penetration (SCP). STUDY DESIGN: Experimental study. SAMPLE POPULATION: Disarticulated equine hooves (n = 24) and 24 isolated distal phalanges. METHODS: Hooves/distal phalanges cut in a sagittal plane were repaired with 1 of 2 different cortical screw placements in lag fashion. In group 1 (conventional screw placement), the screw was inserted halfway between the proximal border of the solar canal (SC) and the subchondral bone surface on a line parallel to the dorsal cortex, whereas in group 2, the screw was inserted more palmar/plantar, where a perpendicular line drawn from the group 1 position reached the palmar/plantar cortex. Construct strength was evaluated by 3-point bending to failure. SCP was assessed by CT imaging and macroscopically. RESULTS: Screws were significantly longer in group 2 and in forelimbs. Group 2 isolated distal phalanges had a significantly more rigid fixation compared with the conventional screw position (maximum point at failure 31%, bending stiffness 41% higher). Lumen reduction of the SC was observed in 13/52 specimens (all from group 2), of which 9 were forelimbs. CONCLUSIONS: More distal screw positioning compared with the conventionally recommended screw position for internal fixation of type III distal phalangeal fractures allows placement of a longer screw and renders a more rigid fracture fixation. The novel screw position, however, carries a higher risk of SCP
Resumo:
Development of novel implants in orthopaedic trauma surgery is based on limited datasets of cadaver trials or artificial bone models. A method has been developed whereby implants can be constructed in an evidence based method founded on a large anatomic database consisting of more than 2.000 datasets of bones extracted from CT scans. The aim of this study was the development and clinical application of an anatomically pre-contoured plate for the treatment of distal fibular fractures based on the anatomical database. 48 Caucasian and Asian bone models (left and right) from the database were used for the preliminary optimization process and validation of the fibula plate. The implant was constructed to fit bilaterally in a lateral position of the fibula. Then a biomechanical comparison of the designed implant to the current gold standard in the treatment of distal fibular fractures (locking 1/3 tubular plate) was conducted. Finally, a clinical surveillance study to evaluate the grade of implant fit achieved was performed. The results showed that with a virtual anatomic database it was possible to design a fibula plate with an optimized fit for a large proportion of the population. Biomechanical testing showed the novel fibula plate to be superior to 1/3 tubular plates in 4-point bending tests. The clinical application showed a very high degree of primary implant fit. Only in a small minority of cases further intra-operative implant bending was necessary. Therefore, the goal to develop an implant for the treatment of distal fibular fractures based on the evidence of a large anatomical database could be attained. Biomechanical testing showed good results regarding the stability and the clinical application confirmed the high grade of anatomical fit.
Resumo:
The aim of our study was to develop a modeling framework suitable to quantify the incidence, absolute number and economic impact of osteoporosis-attributable hip, vertebral and distal forearm fractures, with a particular focus on change over time, and with application to the situation in Switzerland from 2000 to 2020. A Markov process model was developed and analyzed by Monte Carlo simulation. A demographic scenario provided by the Swiss Federal Statistical Office and various Swiss and international data sources were used as model inputs. Demographic and epidemiologic input parameters were reproduced correctly, confirming the internal validity of the model. The proportion of the Swiss population aged 50 years or over will rise from 33.3% in 2000 to 41.3% in 2020. At the total population level, osteoporosis-attributable incidence will rise from 1.16 to 1.54 per 1,000 person-years in the case of hip fracture, from 3.28 to 4.18 per 1,000 person-years in the case of radiographic vertebral fracture, and from 0.59 to 0.70 per 1,000 person-years in the case of distal forearm fracture. Osteoporosis-attributable hip fracture numbers will rise from 8,375 to 11,353, vertebral fracture numbers will rise from 23,584 to 30,883, and distal forearm fracture numbers will rise from 4,209 to 5,186. Population-level osteoporosis-related direct medical inpatient costs per year will rise from 713.4 million Swiss francs (CHF) to CHF946.2 million. These figures correspond to 1.6% and 2.2% of Swiss health care expenditures in 2000. The modeling framework described can be applied to a wide variety of settings. It can be used to assess the impact of new prevention, diagnostic and treatment strategies. In Switzerland incidences of osteoporotic hip, vertebral and distal forearm fracture will rise by 33%, 27%, and 19%, respectively, between 2000 and 2020, if current prevention and treatment patterns are maintained. Corresponding absolute fracture numbers will rise by 36%, 31%, and 23%. Related direct medical inpatient costs are predicted to increase by 33%; however, this estimate is subject to uncertainty due to limited availability of input data.
Resumo:
The most widely accepted treatment for comminuted fractures of the radial head is either the excision or open reduction and internal fixation. The purpose of the present study is to evaluate the value of an 'on-table' reconstruction technique in severely comminuted fractures of the radial head. In this study, two patients with a Mason type-III and four patients with a Mason type-IV radial-head fracture were treated with 'on-table' reconstruction and fixation using low-profile mini-plates. After a mean follow-up of 112 months (47-154 months), the mean elbow motion was 0-6-141 degrees extension flexion with 79 degrees of pronation and 70 degrees of supination. The mean Broberg and Morrey functional rating score was 97.0 points, the Mayo Elbow Performance Index was 99.2 points and the mean Disabilities of the Arm, Shoulder, and Hand (DASH) Outcome Measure score was 1.94 points. One patient had symptoms of degenerative changes, with a slight joint-space narrowing. There were no radiographic signs of devitalisation at final examination. Comminuted fractures of the radial head, which would otherwise require excision, can be successfully treated with an 'on-table' reconstruction technique.
Resumo:
Mason type III fractures of the radial head are treated by open reduction and internal fixation, resection or prosthetic joint replacement. When internal fixation is performed, fixation of the radial head to the shaft is difficult and implant-related complications are common. Furthermore, problems of devascularisation of the radial head can result from fixation of the plate to the radial neck. In a small retrospective study, the treatment of Mason type III fractures with fixation of the radial neck in 13 cases (group 2) was compared with 12 cases where no fixation was performed (group 1). The mean clinical and radiological follow-up was four years (1 to 9). The Broberg-Morrey index showed excellent results in both groups. Degenerative radiological changes were seen more frequently in group 2, and removal of the implant was necessary in seven of 13 cases. Post-operative evaluation of these two different techniques revealed similar ranges of movement and functional scores. We propose that anatomical reconstruction of the radial head without metalwork fixation to the neck is preferable, and the outcome is the same as that achieved with the conventional technique. In addition degenerative changes of the elbow joint may develop less frequently, and implant removal is not necessary.
Resumo:
OBJECTIVE: To report stabilization of closed, comminuted distal metaphyseal transverse fractures of the left tibia and fibula in a tiger using a hybrid circular-linear external skeletal fixator. STUDY DESIGN: Clinical report. ANIMAL: Juvenile tiger (15 months, 90 kg). METHODS: From imaging studies, the tiger had comminuted distal metaphyseal transverse fractures of the left tibia and fibula, with mild caudolateral displacement and moderate compression. Multiple fissures extended from the fractures through the distal metaphyses, extending toward, but not involving the distal tibial and fibular physes. A hybrid circular-linear external skeletal fixator was applied by closed reduction, to stabilize the fractures. RESULTS: The fractures healed and the fixator was removed 5 weeks after stabilization. Limb length and alignment were similar to the normal contralateral limb at hospital discharge, 8 weeks after surgery. Two weeks later, the tiger had fractures of the right tibia and fibula and was euthanatized. Necropsy confirmed pathologic fractures ascribed to copper deficiency. CONCLUSION: Closed application of the hybrid construct provided sufficient stability to allow this 90 kg tiger's juxta-articular fractures to heal with minimal complications and without disrupting growth from the adjacent physes.