5 resultados para criticality
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The (2 + 1)-d U(1) quantum link model is a gauge theory, amenable to quantum simulation, with a spontaneously broken SO(2) symmetry emerging at a quantum phase transition. Its low-energy physics is described by a (2 + 1)-d RP(1) effective field theory, perturbed by an SO(2) breaking operator, which prevents the interpretation of the emergent pseudo-Goldstone boson as a dual photon. At the quantum phase transition, the model mimics some features of deconfined quantum criticality, but remains linearly confining. Deconfinement only sets in at high temperature.
Resumo:
A quantum critical point (QCP) is a singularity in the phase diagram arising because of quantum mechanical fluctuations. The exotic properties of some of the most enigmatic physical systems, including unconventional metals and superconductors, quantum magnets and ultracold atomic condensates, have been related to the importance of critical quantum and thermal fluctuations near such a point. However, direct and continuous control of these fluctuations has been difficult to realize, and complete thermodynamic and spectroscopic information is required to disentangle the effects of quantum and classical physics around a QCP. Here we achieve this control in a high-pressure, high-resolution neutron scattering experiment on the quantum dimer material TlCuCl3. By measuring the magnetic excitation spectrum across the entire quantum critical phase diagram, we illustrate the similarities between quantum and thermal melting of magnetic order. We prove the critical nature of the unconventional longitudinal (Higgs) mode of the ordered phase by damping it thermally. We demonstrate the development of two types of criticality, quantum and classical, and use their static and dynamic scaling properties to conclude that quantum and thermal fluctuations can behave largely independently near a QCP.
Resumo:
This article addresses the issue of kriging-based optimization of stochastic simulators. Many of these simulators depend on factors that tune the level of precision of the response, the gain in accuracy being at a price of computational time. The contribution of this work is two-fold: first, we propose a quantile-based criterion for the sequential design of experiments, in the fashion of the classical expected improvement criterion, which allows an elegant treatment of heterogeneous response precisions. Second, we present a procedure for the allocation of the computational time given to each measurement, allowing a better distribution of the computational effort and increased efficiency. Finally, the optimization method is applied to an original application in nuclear criticality safety. This article has supplementary material available online. The proposed criterion is available in the R package DiceOptim.
Resumo:
We consider percolation properties of the Boolean model generated by a Gibbs point process and balls with deterministic radius. We show that for a large class of Gibbs point processes there exists a critical activity, such that percolation occurs a.s. above criticality. For locally stable Gibbs point processes we show a converse result, i.e. they do not percolate a.s. at low activity.