4 resultados para chorda tympani

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

60.00% 60.00%

Publicador:

Resumo:

OBJECTIVE: To use a study on dysgeusia to assess the usefulness of an otology database. STUDY DESIGN: Data were extracted from the international Common Otology Database. INTERVENTION: Primary stapes operations. MAIN OUTCOME MEASURE AND RESULTS: From a cohort of 14 otologists, only 8 (57%) were able to satisfy external validation and maintain data input for a period of at least 6 months. The rates of dysgeusia varied from 0 to 39% at 3 months and 0 to 27% at 6 months. The percentages of patients with taste disturbance at 6 months in the "nerve-cut" and "nerve-preserved" groups were 22.7 and 10.9%, respectively, although this was not statistically significant (chi2; p = 0.325). CONCLUSION: Many surgeons found it difficult to maintain a prospective otology database. The rates of certain subjective symptoms such as dysgeusia are influenced by how vigorously the reviewers prompt the response from the patients. Dysgeusia after stapes surgery is common even if the chorda tympani nerve is preserved. Many patients whose chorda tympani nerve is divided may not complain of dysgeusia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Delivering cochlear implants through a minimally invasive tunnel (1.8 mm in diameter) from the mastoid surface to the inner ear is referred to as direct cochlear access (DCA). Based on cone beam as well as micro-computed tomography imaging, this in vitro study evaluates the feasibility and efficacy of manual cochlear electrode array insertions via DCA. Free-fitting electrode arrays were inserted in 8 temporal bone specimens with previously drilled DCA tunnels. The insertion depth angle, procedural time, tunnel alignment as well as the inserted scala and intracochlear trauma were assessed. Seven of the 8 insertions were full insertions, with insertion depth angles higher than 520°. Three cases of atraumatic scala tympani insertion, 3 cases of probable basilar membrane rupture and 1 case of dislocation into the scala vestibuli were observed (1 specimen was damaged during extraction). Manual electrode array insertion following a DCA procedure seems to be feasible and safe and is a further step toward clinical application of image-guided otological microsurgery.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A major component of minimally invasive cochlear implantation is atraumatic scala tympani (ST) placement of the electrode array. This work reports on a semiautomatic planning paradigm that uses anatomical landmarks and cochlear surface models for cochleostomy target and insertion trajectory computation. The method was validated in a human whole head cadaver model (n = 10 ears). Cochleostomy targets were generated from an automated script and used for consecutive planning of a direct cochlear access (DCA) drill trajectory from the mastoid surface to the inner ear. An image-guided robotic system was used to perform both, DCA and cochleostomy drilling. Nine of 10 implanted specimens showed complete ST placement. One case of scala vestibuli insertion occurred due to a registration/drilling error of 0.79 mm. The presented approach indicates that a safe cochleostomy target and insertion trajectory can be planned using conventional clinical imaging modalities, which lack sufficient resolution to identify the basilar membrane.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

HYPOTHESIS To evaluate the feasibility and the results of insertion of two types of electrode arrays in a robotically assisted surgical approach. BACKGROUND Recent publications demonstrated that robot-assisted surgery allows the implantation of free-fitting electrode arrays through a cochleostomy drilled via a narrow bony tunnel (DCA). We investigated if electrode arrays from different manufacturers could be used with this approach. METHODS Cone-beam CT imaging was performed on fivecadaveric heads after placement of fiducial screws. Relevant anatomical structures were segmented and the DCA trajectory, including the position of the cochleostomy, was defined to target the center of the scala tympani while reducing the risk of lesions to the facial nerve. Med-El Flex 28 and Cochlear CI422 electrodes were implanted on both sides, and their position was verified by cone-beam CT. Finally, temporal bones were dissected to assess the occurrence of damage to anatomical structures during DCA drilling. RESULTS The cochleostomy site was directed in the scala tympani in 9 of 10 cases. The insertion of electrode arrays was successful in 19 of 20 attempts. No facial nerve damage was observed. The average difference between the planned and the postoperative trajectory was 0.17 ± 0.19 mm at the level of the facial nerve. The average depth of insertion was 305.5 ± 55.2 and 243 ± 32.1 degrees with Med-El and Cochlear arrays, respectively. CONCLUSIONS Robot-assisted surgery is a reliable tool to allow cochlear implantation through a cochleostomy. Technical solutions must be developed to improve the electrode array insertion using this approach.