11 resultados para cationic dyes

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The redox chemistry and the related surface phase behavior of Safranine (SAF) and Janus Green B (JGB) have been studied by means of cyclic voltammetry in combination with in situ Scanning Tunneling Microscopy using HOPG (Highly Oriented Pyrolytic Graphite) and single crystalline Cu(1 0 0) as model substrates, both revealing different widths of the accessible potential windows. JGB and SAF serve as prototypical heterocyclic suppressor/leveler additives that are used for the metallization of 3D-TSVs (3D Through Silicon Vias) following a classical "leveling" concept. SAF can be considered as the reductive decomposition product of JGB that is formed at the copper/electrolyte interface upon electroplating. Both additives reveal a pronounced pH-dependent redox-chemistry with redox-transitions lying close to or even beyond the anodic limit of the copper potential window. Affected by these redox-processes are in particular the aromatic cores of those heterocycles that can be (quasi)reversibly reduced by a two electron transfer process within the potential window of copper. Therefore we identify the reduced form of those dyes as the active components for the suppressing/leveling effect in copper plating. STM data clearly shows a dye surface phase behavior that is crucially determined by its potential-dependent redox-chemistry. This will be exemplarily discussed for the SAF dye. On chloride-modified Cu(1 0 0) mono-reduced SAF forms a structurally well-defined monolayer of cationic stacking polymers. However, this coupled anion/cation layer reveals only minor suppressing capabilities with respect to the copper dissolution and deposition processes. Complete reduction of the aromatic heterocycle finally leads to the 3D precipitation of hydrophobic reaction products. 3D clusters of this SAF precipitate are discussed as the active structural motif for the suppressing effect of these dyes. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The synthesis and incorporation into oligodeoxynucleotides of two novel derivatives of bicyclothymidine carrying a cationic diaminopropyl or lysine unit in the C(6′)-β position is described. Compared to unmodified DNA these oligonucleotides show Tm-neutral behavior when paired against complementary DNA and are destabilizing when paired against RNA. Unaided uptake experiments of a decamer containing five lys-bcT units into HeLa and HEK293T cells showed substantial internalization with mostly cytosolic distribution which was not observed in the case of an unmodified control oligonucleotide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The impact of di-cationic pentamidine-analogues against Toxoplama gondii (Rh- and Me49-background) was investigated. The 72 h-growth assays showed that the arylimidamide DB750 inhibited the proliferation of tachyzoites of T. gondii Rh and T. gondii Me49 with an IC(50) of 0.11 and 0.13 muM, respectively. Pre-incubation of fibroblast monolayers with 1 muM DB750 for 12 h and subsequent culture in the absence of the drug also resulted in a pronounced inhibiton of parasite proliferation. However, upon 5-6 days of drug exposure, T. gondii tachyzoites adapted to the compound and resumed proliferation up to a concentration of 1.2 muM. Out of a set of 32 di-cationic compounds screened for in vitro activity against T. gondii, the arylimidamide DB745, exhibiting an IC(50) of 0.03 muM and favourable selective toxicity was chosen for further studies. DB745 also inhibited the proliferation of DB750-adapted T. gondii (IC(50)=0.07 muM). In contrast to DB750, DB745 also had a profound negative impact on extracellular non-adapted T. gondii tachyzoites, but not on DB750-adapted T. gondii. Adaptation of T. gondii to DB745 (up to a concentration of 0.46 muM) was much more difficult to achieve and feasible only over a period of 110 days. In cultures infected with DB750-adapted T. gondii seemingly intact parasites could occasionally be detected by TEM. This illustrates the astonishing capacity of T. gondii tachyzoites to adapt to environmental changes, at least under in vitro conditions, and suggests that DB745 could be an interesting drug candidate for further assessments in appropriate in vivo models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The impact of the systematic variation of either DeltapK(a) or mobility of 140 biprotic carrier ampholytes on the conductivity profile of a pH 3-10 gradient was studied by dynamic computer simulation. A configuration with the greatest DeltapK(a) in the pH 6-7 range and uniform mobilities produced a conductivity profile consistent with that which is experimentally observed. A similar result was observed when the neutral (pI = 7) ampholyte is assigned the lowest mobility and mobilities of the other carriers are systematically increased as their pI's recede from 7. When equal DeltapK(a) values and mobilities are assigned to all ampholytes a conductivity plateau in the pH 5-9 region is produced which does not reflect what is seen experimentally. The variation in DeltapK(a) values is considered to most accurately reflect the electrochemical parameters of commercially available mixtures of carrier ampholytes. Simulations with unequal mobilities of the cationic and anionic species of the carrier ampholytes show either cathodic (greater mobility of the cationic species) or anodic (greater mobility of the anionic species) drifts of the pH gradient. The simulated cationic drifts compare well to those observed experimentally in a capillary in which the focusing of three dyes was followed by whole column optical imaging. The cathodic drift flattens the acidic portion of the gradient and steepens the basic part. This phenomenon is an additional argument against the notion that focused zones of carrier ampholytes have no electrophoretic flux.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reduced glutathione (GSH) protects cells against injury by oxidative stress and maintains a range of vital functions. In vitro cell cultures have been used as experimental models to study the role of GSH in chemical toxicity in mammals; however, this approach has been rarely used with fish cells to date. The present study aimed to evaluate sensitivity and specificity of three fluorescent dyes for measuring pro-oxidant-induced changes of GSH contents in fish cell lines: monochlorobimane (mBCl), 5-chloromethylfluorescein diacetate (CMFDA) and 7-amino-4-chloromethylcoumarin (CMAC-blue). Two cell lines were studied, the EPC line established from a skin tumour of carp Cyprinus carpio, and BF-2 cells established from fins of bluegill sunfish Lepomis macrochirus. The cells were exposed for 6 and 24 h to low cytotoxic concentrations of pro-oxidants including hydrogen peroxide, paraquat (PQ), copper and the GSH synthesis inhibitor, L-buthionine-SR-sulfoximine (BSO). The results indicate moderate differences in the GSH response between EPC and BF-2 cells, but distinct differences in the magnitude of the GSH response for the four pro-oxidants. Further, the choice of GSH dye can critically affect the results, with CMFDA appearing to be less specific for GSH than mBCl and CMAC-blue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Four new tetrathiafulvalene (TTF)-based dyes featured with a donor–bridge–acceptor (D–π–A) structure were synthesized and characterized. All of them undergo two reversible oxidations to form stable radical cation and dication species. The electronic interactions between the TTF donor and the cyanoacrylic acid acceptor through the different π-linkers have been demonstrated by the presence of a photo-induced intramolecular charge-transfer (ICT) absorption band in the visible region. A red shift of the ICT state can be finely tuned by the degree of aromaticity and extended conjugation of π-bridges. To some extent, the oxidation potentials of these dyes are affected by the nature of π-bridges. They have been applied in organic dye-sensitized solar cells, showing relatively low power conversion efficiencies of up to 0.87% due to substantial charge recombination losses.