15 resultados para arterioles

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is known that hypertension is associated with endothelial dysfunction and that Angiotensin II (Ang II) is a key player in the pathogenesis of hypertension. We aimed to elucidate whether endothelial dysfunction is a specific feature of Ang II-mediated hypertension or a common finding of hypertension, independently of underlying etiology. We studied endothelial-dependent vasorelaxation in precapillary resistance arterioles and in various large-caliber conductance arteries in wild-type mice with Ang II-dependent hypertension (2-kidney 1-clip (2K1C) model) or Ang II-independent (volume overload) hypertension (1-kidney 1-clip model (1K1C)). Normotensive sham mice were used as controls. Aortic mechanical properties were also evaluated. Intravital microscopy of precapillary arterioles revealed a significantly impaired endothelium-dependent vasorelaxation in 2K1C mice compared with sham mice, as quantified by the ratio of acetylcholine (ACh)-induced over S-nitroso-N-acetyl-D,L-penicillamine (SNAP)-induced vasorelaxation (2K1C: 0.49±0.12 vs. sham: 0.87±0.11, P=0.018). In contrast, the ACh/SNAP ratio in volume-overload hypertension 1K1C mice was not significantly different from sham mice, indicating no specific endothelial dysfunction (1K1C: 0.77±0.27 vs. sham: 0.87±0.11, P=0.138). Mechanical aortic wall properties and endothelium-dependent vasorelaxation, assessed ex vivo in rings of large-caliber conductance (abdominal and thoracic aorta, carotid and femoral arteries), were not different between 2K1C, 1K1C and sham mice. Endothelial dysfunction is an early feature of Ang II- but not volume-overload-mediated hypertension. This occurs exclusively at the level of precapillary arterioles and not in conduit arteries. Our findings, if confirmed in clinical studies, will provide a better understanding of the pathophysiological mechanisms of hypertension.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Potassium-enriched diets exert renal and cardiovascular protective effects, but the underlying mechanisms are largely unknown.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Early brain injury (EBI) after subarachnoid hemorrhage (SAH) is characterized by a severe, cerebral perfusion pressure (CPP)-independent reduction in cerebral blood flow suggesting alterations on the level of cerebral microvessels. Therefore, we aimed to use in-vivo imaging to investigate the cerebral microcirculation after experimental SAH. Subarachnoid hemorrhage was induced in C57/BL6 mice by endovascular perforation. Pial arterioles and venules (10 to 80 μm diameter) were examined using in-vivo fluorescence microscopy, 3, 6, and 72 hours after SAH. Venular diameter or flow was not affected by SAH, while >70% of arterioles constricted by 22% to 33% up to 3 days after hemorrhage (P<0.05 versus sham). The smaller the investigated arterioles, the more pronounced the constriction (r(2)=0.92, P<0.04). Approximately 30% of constricted arterioles were occluded by microthrombi and the frequency of arteriolar microthrombosis correlated with the degree of constriction (r(2)=0.93, P<0.03). The current study demonstrates that SAH induces microarterial constrictions and microthrombosis in vivo. These findings may explain the early CPP-independent decrease in cerebral blood flow after SAH and may therefore serve as novel targets for the treatment of early perfusion deficits after SAH.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We describe an angiotensin (Ang) II-containing innervation of the kidney. Cryosections of rat, pig and human kidneys were investigated for the presence of Ang II-containing nerve fibers using a mouse monoclonal antibody against Ang II (4B3). Co-staining was performed with antibodies against synaptophysin, tyrosine 3-hydroxylase, and dopamine beta-hydroxylase to detect catecholaminergic efferent fibers and against calcitonin gene-related peptide to detect sensory fibers. Tagged secondary antibodies and confocal light or laser scanning microscopy were used for immunofluorescence detection. Ang II-containing nerve fibers were densely present in the renal pelvis, the subepithelial layer of the urothelium, the arterial nervous plexus, and the peritubular interstitium of the cortex and outer medulla. They were infrequent in central veins and the renal capsule and absent within glomeruli and the renal papilla. Ang II-positive fibers represented phenotypic subgroups of catecholaminergic postganglionic or sensory fibers with different morphology and intrarenal distribution compared to their Ang II-negative counterparts. The Ang II-positive postganglionic fibers were thicker, produced typically fusiform varicosities and preferentially innervated the outer medulla and periglomerular arterioles. Ang II-negative sensory fibers were highly varicose, prevailing in the pelvis and scarce in the renal periphery compared to the rarely varicose Ang II-positive fibers. Neurons within renal microganglia displayed angiotensinergic, catecholaminergic, or combined phenotypes. Our results suggest that autonomic fibers may be an independent source of intrarenal Ang II acting as a neuropeptide co-transmitter or neuromodulator. The angiotensinergic renal innervation may play a distinct role in the neuronal control of renal sodium reabsorption, vasomotion and renin secretion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microscopic pulmonary tumor embolism (MPTE) is an uncommon cause of dyspnea in patients with cancer and one of the most difficult to diagnose. MPTE is a syndrome that is pathologically characterized by the occlusion of small pulmonary arteries and arterioles by aggregates of tumor cells. Because the clinical picture resembles that of thromboembolic disease, it is rarely recognized before death. The most common clinical symptom is subacute progressive dyspnea over weeks to months. We recently observed a case of MPTE of exceptional interest as the patient was under aggressive anticoagulant treatment and developed fulminant pulmonary hypertension with fatal right heart failure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

HISTORY: A 76-year-old woman and a 62-year-old man were both referred to our clinic because of an unexplained weight loss, increasing dry cough and shortness of breath. INVESTIGATIONS: Investigations revealed an adenocarcinoma of the colon with retroperitoneal, mediastinal and supraclavicular lymph node metastasis and poorly differentiated carcinoma of the prostate with extensive bone metastases. During their hospital stay both patients developed increasing shortness of breath and clinical signs of right heart failure. Echocardiography confirmed severe pulmonary hypertension and dilatation of the right ventricle in both patients. Despite the high degree of clinical suspicion CT scans of the thorax could not demonstrate pulmonary embolism. DIAGNOSIS, TREATMENT AND COURSE: During the following days the patients condition deteriorated further and both patients' died from irreversible right heart failure. Both autopsies showed extensive metastatic adenocarcinoma with marked angiosis carcinomatosa of the lungs with numerous occlusions of small arteries and arterioles and resulting cor pulmonale. Thrombotic pulmonary embolism could not be detected. CONCLUSION: In patients with malignant neoplasms, especially adenocarcinomas, dyspnea and signs of increasing pulmonary artery pressure, the possibility of a microscopic pulmonary tumor embolism should be considered after exclusion of more usual causes especially thrombotic pulmonary embolism. In selected cases a cytologic examination of blood aspirated from a wedged pulmonary artery catheter can be performed to prove angiosis is carcinomatosa.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

INTRODUCTION: This study was designed to examine differences in the arteriolar vasoconstrictive response between arginine vasopressin (AVP) and norepinephrine (NE) on the microcirculatory level in the hamster window chamber model in unanesthetized, normotonic hamsters using intravital microscopy. It is known from patients with advanced vasodilatory shock that AVP exerts strong additional vasoconstriction when incremental dosage increases of NE have no further effect on mean arterial blood pressure (MAP). METHODS: In a prospective controlled experimental study, eleven awake, male golden Syrian hamsters were instrumented with a viewing window inserted into the dorsal skinfold. NE (2 microg/kg/minute) and AVP (0.0001 IU/kg/minute, equivalent to 4 IU/h in a 70 kg patient) were continuously infused to achieve a similar increase in MAP. According to their position within the arteriolar network, arterioles were grouped into five types: A0 (branch off small artery) to A4 (branch off A3 arteriole). RESULTS: Reduction of arteriolar diameter (NE, -31 +/- 12% versus AVP, -49 +/- 7%; p = 0.002), cross sectional area (NE, -49 +/- 17% versus AVP, -73 +/- 7%; p = 0.002), and arteriolar blood flow (NE, -62 +/- 13% versus AVP, -80 +/- 6%; p = 0.004) in A0 arterioles was significantly more pronounced in AVP animals. There was no difference in red blood cell velocities in A0 arterioles between groups. The reduction of diameter, cross sectional area, red blood cell velocity, and arteriolar blood flow in A1 to A4 arterioles was comparable in AVP and NE animals. CONCLUSION: Within the microvascular network, AVP exerted significantly stronger vasoconstriction on large A0 arterioles than NE under physiological conditions. This observation may partly explain why AVP is such a potent vasopressor hormone and can increase systemic vascular resistance even in advanced vasodilatory shock unresponsive to increases in standard catecholamine therapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Incipient diabetic retinopathy is characterized by increased capillary permeability and progressive capillary occlusion. The earliest structural change is the loss of pericytes (PC) from the retinal capillaries. With the availability of the XLacZ mouse, which expresses the LacZ reporter in a PC/vascular smooth muscle cell (vSMC) specific fashion, we quantitatively assessed the temporal dynamics of smooth muscle cells in arterioles under hyperglycemic conditions. We induced stable hyperglycemia in XLacZ mice. After 4, 8, and 12 weeks of diabetes retinae were isolated and beta-galactosidase/lectin stained. The numbers of smooth muscle cells were counted in retinal whole mounts, and diameters of retinal radial and branching arterioles and venules were analyzed at different distances apart from the center of the retina. After eight weeks of diabetes, the numbers of vSMCs were significantly reduced in radial arterioles 1000 microm distant from the optic disc. At proximal sites of branching arterioles (400 microm distant from the center), and at distal sites (1000 microm), vSMC were significantly reduced already after 4 weeks (to a maximum of 31 %). These changes were not associated with any measurable variation in vessel diameters. These data indicate quantitatively that hyperglycemia not only causes pericyte loss, but also loss of vSMCs in the retinal vasculature. Our data suggest that arteriolar vSMC in the eye underlie similar regulations which induce early pericyte loss in the diabetic retina.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Postmortem minimal invasive angiography has already been implemented to support virtual autopsy examinations. An experimental approach in a porcine model to overcome an initially described artificial tissue edema artifact by using a poly ethylene glycol (PEG) containing contrast agent solution showed promising results. The present publication describes the first application of PEG in a whole corpse angiographic CT examination. A minimal invasive postmortem CT angiography was performed in a human corpse utilizing the high viscosity contrast agent solution containing 65% of PEG. Injection was carried out via the femoral artery into the aortic root in simulated cardiac output conditions. Subsequent CT scanning delivered the 3D volume data of the whole corpse. Visualization of the human arterial anatomy was excellent and the contrast agent distribution was generally limited to the arterial system as intended. As exceptions an enhancement of the brain, the left ventricular myocardium and the renal cortex became obvious. This most likely represented the stage of centralization of the blood circulation at the time of death with dilatation of the precapillary arterioles within these tissues. Especially for the brain this resulted in a distinctively improved visualization of the intracerebral structures by CT. However, the general tissue edema artifact of postmortem minimal invasive angiography examinations could be distinctively reduced.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A large number of studies utilize animal models to investigate therapeutic angiogenesis. However, the lack of a standardized experimental model leaves the comparison of different studies problematic. To establish a reference model of prolonged moderate tissue ischemia, we created unilateral hind limb ischemia in athymic rnu-rats by surgical excision of the femoral vessels. Blood flow of the limb was monitored for 60 days by laser Doppler imaging. Following a short postoperative period of substantially depressed perfusion, the animals showed a status of moderate hind limb ischemia from day 14 onwards. Thereafter, the perfusion remained at a constant level (55.5% of normal value) until the end of the observation period. Histopathological assessment of the ischemic musculature on postoperative days 28 and 60 showed essentially no inflammatory cell infiltrate or fibrosis. However, the mitochondrial activity and capillary-to-fiber ratio of the muscular tissue was reduced to 52.7% of normal, presenting with a significant weakness of the ischemic limb evidenced by a progressive decline in performance. Intramuscular injection of culture-expanded human endothelial progenitor cells (EPC) resulted in a significant increase in blood flow (82.0+/-3.5% of normal), capillary density (1.60+/-0.08/muscle fiber) and smooth muscle covered arterioles (8.0+/-0.6/high power field) in the ischemic hind limb as compared to controls (55.0+/-3.1%; 0.99+/-0.03; 5.0+/-0.2). In conclusion, chronic, moderate hind limb ischemia with consistently reduced perfusion levels persisting over a prolonged period can be established reliably in rnu athymic nude rats and is responsive to pro-angiogenic treatments such as EPC transplantation. This study provides a detailed protocol of a highly reproducible reference model to test novel therapeutic options for limb ischemia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND/AIMS: Proliferative diabetic retinopathy is characterized by the formation of retinal neovascularization. Angiopoietin-2 (Ang-2) and matrix metalloproteinase (MMP) play a critical role in angiogenesis. However, the precise location and function of Ang-2 during formation of retinal neovascularizations driven by hypoxia in relation to MMP activity have not been elucidated. In this study, we investigated the response of Ang-2 heterozygous knockout retinas (Ang2(+/-) mouse) to hypoxia and its link to MMP activity in an oxygen-induced retinopathy (OIR) model. METHODS: Pre-retinal neovascularizations were quantitated in vertical sections. Intra-retinal angiogenesis was assessed by whole mount immunofluorescence staining of retinas. MMP activity was examined in retinal protein lysate and whole mount retinal in situ zymography. RESULTS: Ang2(+/-) retinas subjected to the OIR model showed 33% reduced neovascularization and 271% increased avascular zones at postnatal day 17. In the OIR model, Ang-2 was modestly expressed in pre-retinal neovascularizations and venules, but strongly in arterioles and capillary sprouts. MMPs were activated in close association to where Ang-2 is expressed. MMP activity was substantially decreased in Ang2(+/-) retinas. CONCLUSIONS: Our present data suggest the spatially concomitant expression of Ang2 and MMPs, and that Ang2 modulates hypoxia-induced neovascularization by regulating MMP activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Regardless of the mechanisms that initiate the increase in blood pressure, functional and structural changes in the systemic vasculature are the final result of long-standing hypertension. These changes can occur in the macro- but also in the microvasculature. The supply of the tissues with oxygen, nutrients, and metabolites occurs almost exclusively in the microcirculation (which comprises resistance arterioles, capillaries and venules), and an adequate perfusion via the microcirculatory network is essential for the integrity of tissue and organ function. This review focuses on results from clinical studies in hypertensive patients, which have been performed in close cooperation with different clinical groups over the last three decades. Intravital microscopy was used to study skin microcirculation, microcatheters for the analysis of skeletal muscle microcirculation, the slit lamp for conjunctival microcirculation and the laser scanning ophthalmoscope for the measurement of the retinal capillary network. The first changes of the normal microcirculation can be found in about 93% of patients with essential hypertension, long before organ dysfunctions become clinically manifest. The earliest disorders were found in skin capillaries and thereafter in the retina and the skeletal muscle. In general, the disorders in the different areas were clearly correlated. While capillary rarefaction occurred mainly in the retina and the conjunctiva bulbi, in skin capillaries morphological changes were rare. A significant decrease of capillary erythrocyte velocities under resting conditions together with a marked damping of the postischemic hyperemia was found, both correlating with the duration of hypertension or WHO stage or the fundus hypertonicus stage. Also the mean oxygen tension in the skeletal muscle was correlated with the state of the disease. These data show that the microcirculatory disorders in hypertension are systemic and are hallmarks of the long-term complications of hypertension. There is now a large body of evidence that microvascular changes occur very early and may be important in their pathogenesis and progression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Local skin flaps can be divided into two types: random flaps and axial flaps. An axial flap is defined as a flap containing a named artery in its pedicle. For the paramedian forehead flap (PMFF) a lot of surgeons insist on the point that the pedicle must contain the supratrochlear artery. To demonstrate that median forehead flaps (MFF) need not contain a named artery, we selected first 8 patients with a PMFF and further 12 patients who had undergone reconstructive surgery using a MFF. After division, we analysed the pedicle of the flap histologically and measured the diameter of the arteries or arterioles and compared them to anatomical descriptions of the frontal arteries. In none of the 12 cases could we find a functional artery of approximately 1 mm in diameter that could correspond to the supratrochlear artery. The MFF is an axial flap but not in accordance with the current definition of this term. In contrast to published literature, we show that only in a part of cases a named artery was present in the pedicle. Despite this fact, the MFF is a secure flap for full thickness defect repair on the nose.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND AIMS Stem cells participate in vascular regeneration following critical ischemia. However, their angiogenic and remodeling properties, as well as their role in ischemia-related endothelial leukocyte activation, need to be further elucidated. Herein, we investigated the effect of bone marrow-derived mesenchymal stromal cells (BM-MSCs) in a critically ischemic murine skin flap model. METHODS Groups received either 1 × 10(5), 5 × 10(5), or 1 × 10(6) BM-MSCs or cell-free conditioned medium (CM). Controls received sodium chloride. Intravital fluorescence microscopy was performed for morphological and quantitative assessment of micro-hemodynamic parameters over 12 days. RESULTS Tortuosity and diameter of conduit-arterioles were pronounced in the MSC groups (P < 0.01), whereas vasodilation was shifted to the end arteriolar level in the CM group (P < 0.01). These effects were accompanied by angiopoietin-2 expression. Functional capillary density and red blood cell velocity were enhanced in all treatment groups (P < 0.01). Although a significant reduction of rolling and sticking leukocytes was observed in the MSC groups with a reduction of diameter in postcapillary venules (P < 0.01), animals receiving CM exhibited a leukocyte-endothelium interaction similar to controls. This correlated with leukocyte common antigen expression in tissue sections (P < 0.01) and p38 mitogen-activated protein kinase expression from tissue samples. Cytokine analysis from BM-MSC culture medium revealed a 50% reduction of pro-inflammatory cytokines (interleukin [IL]-1β, IL-6, IL-12, tumor necrosis factor-α, interferon-γ) and chemokines (keratinocyte chemoattractant, granulocyte colony-stimulating factor) under hypoxic conditions. DISCUSSION We demonstrated positive effects of BM-MSCs on vascular regeneration and modulation of endothelial leukocyte adhesion in critical ischemic skin. The improvements after MSC application were dose-dependent and superior to the use of CM alone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Subarachnoid hemorrhage is a stroke subtype with particularly bad outcome. Recent findings suggest that constrictions of pial arterioles occurring early after hemorrhage may be responsible for cerebral ischemia and - subsequently - unfavorable outcome after subarachnoid hemorrhage. Since we recently hypothesized that the lack of nitric oxide may cause post-hemorrhagic microvasospasms, our aim was to investigate whether inhaled nitric oxide, a treatment paradigm selectively delivering nitric oxide to ischemic microvessels, is able to dilate post-hemorrhagic microvasospasms; thereby improving outcome after experimental subarachnoid hemorrhage. C57BL/6 mice were subjected to experimental SAH. Three hours after subarachnoid hemorrhage pial artery spasms were quantified by intravital microscopy, then mice received inhaled nitric oxide or vehicle. For induction of large artery spasms mice received an intracisternal injection of autologous blood. Inhaled nitric oxide significantly reduced number and severity of subarachnoid hemorrhage-induced post-hemorrhage microvasospasms while only having limited effect on large artery spasms. This resulted in less brain-edema-formation, less hippocampal neuronal loss, lack of mortality, and significantly improved neurological outcome after subarachnoid hemorrhage. This suggests that spasms of pial arterioles play a major role for the outcome after subarachnoid hemorrhage and that lack of nitric oxide is an important mechanism of post-hemorrhagic microvascular dysfunction. Reversing microvascular dysfunction by inhaled nitric oxide might be a promising treatment strategy for subarachnoid hemorrhage.