12 resultados para adhesive resin
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
OBJECTIVES: This study evaluated the initial and the artificially aged push-out bond strength between ceramic and dentin produced by one of five resin cements. METHODS: Two-hundred direct ceramic restorations (IPS Empress CAD) were luted to standardized Class I cavities in extracted human molars using one of four self-adhesive cements (SpeedCEM, RelyX Unicem Aplicap, SmartCem2 and iCEM) or a reference etch-and-rinse resin cement (Syntac/Variolink II) (n=40/cement). Push-out bond strength (PBS) was measured (1) after 24h water storage (non-aged group; n=20/cement) or (2) after artificial ageing with 5000 thermal cycles followed by 6 months humid storage (aged group; n=20/cement). Nonparametrical ANOVA and pairwise Wilcoxon rank-sum tests with Bonferroni-Holm adjustment were applied for statistical analysis. The significance level was set at alpha=0.05. In addition, failure mode and fracture pattern were analyzed by stereomicroscope and scanning electron microscopy. RESULTS: Whereas no statistically significant effect of storage condition was found (p=0.441), there was a significant effect of resin cement (p<0.0001): RelyX Unicem showed significantly higher PBS than the other cements. Syntac/Variolink II showed significantly higher PBS than SmartCEM2 (p<0.001). No significant differences were found between SpeedCEM, SmartCem2, and iCEM. The predominant failure mode was adhesive failure of cements at the dentin interface except for RelyX Unicem which in most cases showed cohesive failure in ceramic. SIGNIFICANCE: The resin cements showed marked differences in push-out bond strength when used for luting ceramic restorations to dentin. Variolink II with the etch-and-rinse adhesive Syntac did not perform better than three of the four self-adhesive resin cements tested.
Resumo:
INTRODUCTION: The aim of apical surgery is to hermetically seal the root canal system after root-end resection, thereby enabling periradicular healing. The objective of this nonrandomized prospective clinical study was to report results of 2 different root-end preparation and filling methods, ie, mineral trioxide aggregate (MTA) and an adhesive resin composite (Retroplast). METHODS: The study included 353 consecutive cases with endodontic lesions limited to the periapical area. Root-end cavities were prepared with sonic microtips and filled with MTA (n = 178), or alternatively, a shallow concavity was prepared in the cut root face, with subsequent placement of an adhesive resin composite (Retroplast) (n = 175). Patients were recalled after 1 year. Cases were defined as healed when no clinical signs or symptoms were present and radiographs demonstrated complete or incomplete (scar tissue) healing of previous radiolucencies. RESULTS: The overall rate of healed cases was 85.5%. MTA-treated teeth demonstrated a significantly (P = .003) higher rate of healed cases (91.3%) compared with Retroplast-treated teeth (79.5%). Within the MTA group, 89.5%-100% of cases were classified as healed, depending on the type of treated tooth. In contrast, more variable rates ranging from 66.7%-100% were found in the Retroplast group. In particular, mandibular premolars and molars demonstrated considerably lower rates of healed cases when treated with Retroplast. CONCLUSIONS: MTA can be recommended for root-end filling in apical surgery, irrespective of the type of treated tooth. Retroplast should be used with caution for root-end sealing in apical surgery of mandibular premolars and molars.
Resumo:
INTRODUCTION Recent meta-analyses of the outcome of apical surgery using modern techniques including microsurgical principles and high-power magnification have yielded higher rates of healing. However, the information is mainly based on 1- to 2-year follow-up data. The present prospective study was designed to re-examine a large sample of teeth treated with apical surgery after 5 years. METHODS Patients were recalled 5 years after apical surgery, and treated teeth were classified as healed or not healed based on clinical and radiographic examination. (The latter was performed independently by 3 observers). Two different methods of root-end preparation and filling (primary study parameters) were to be compared (mineral trioxide aggregate [MTA] vs adhesive resin composite [COMP]) without randomization. RESULTS A total of 271 patients and teeth from a 1-year follow-up sample of 339 could be re-examined after 5 years (dropout rate = 20.1%). The overall rate of healed cases was 84.5% with a significant difference (P = .0003) when comparing MTA (92.5%) and COMP (76.6%). The evaluation of secondary study parameters yielded no significant difference for healing outcome when comparing subcategories (ie, sex, age, type of tooth treated, post/screw, type of surgery). CONCLUSIONS The results from this prospective nonrandomized clinical study with a 5-year follow-up of 271 teeth indicate that MTA exhibited a higher healing rate than COMP in the longitudinal prognosis of root-end sealing.
Resumo:
The treatment of amelogenesis imperfecta (AI) with an anterior open bite (AOB) is a challenge for the clinician and often requires a multidisciplinary team of specialists. Most often, patients suffering from these conditions are young and a good functional and esthetic long-term result must be aspired. This clinical report illustrates the orthodontic, maxillofacial, restorative, and prosthodontic rehabilitation of a 20-year-old woman with a hypoplastic form of AI and an AOB malocclusion, having received treatment for the last 6 years. It included adhesive resin composite restorations, orthodontical and maxillofacial surgery with a one-piece Le Fort I osteotomy, and a genioplasty. Subsequent prosthodontic therapy consisted of 28 all-ceramic crowns whereby a solid interdigitation, a canine guidance, and consistent and regular contacts between tooth crowns could be achieved to assure a good functional and esthetic oral situation. The tooth preparation techniques guaranteed minimally invasive treatment. The patient was affected very positively. CLINICAL SIGNIFICANCE: This article describes an interdisciplinary approach to the successful treatment of a patient with a hypoplastic form of amelogenesis imperfecta over a period of 6 years. It starts with a discussion of the conservative steps taken during adolescence and concludes with the final prosthetic rehabilitation with all-ceramic crowns after reaching adulthood.
Resumo:
The aim was to compare eight types of luting agents when used to bond six indirect, laboratory restorative materials to dentin. Cylinders of the six restorative materials (Esteticor Avenir [gold alloy], Tritan [titanium], NobelRondo [feldspathic porcelain], Finesse All-Ceramic [leucite-glass ceramic], Lava [zirconia], and Sinfony [resin composite]) were ground and air-abraded. Cylinders of feldspathic porcelain and glass ceramic were additionally etched with hydrofluoric acid and were silane-treated. The cylinders were luted to ground human dentin with eight luting agents (DeTrey Zinc [zinc phosphate cement], Fuji I [conventional glass ionomer cement], Fuji Plus [resin-modified glass ionomer cement], Variolink II [conventional etch-and-rinse resin cement], Panavia F2.0 and Multilink [self-etch resin cements], and RelyX Unicem Aplicap and Maxcem [self-adhesive resin cements]). After water storage at 37°C for one week, the shear bond strength of the specimens (n=8/group) was measured, and the fracture mode was stereomicroscopically examined. Bond strength data were analyzed with two-factorial analysis of variance (ANOVA) followed by Newman-Keuls' Multiple Range Test (?=0.05). Both the restorative material and the luting agent had a significant effect on bond strength, and significant interaction was noted between the two variables. Zinc phosphate cement and glass ionomer cements produced the lowest bond strengths, whereas the highest bond strengths were found with the two self-etch and one of the self-adhesive resin cements. Generally, the fracture mode varied markedly with the restorative material. The luting agents had a bigger influence on bond strength between restorative materials and dentin than was seen with the restorative material.
Resumo:
Einleitung: Die Anzahl zahnärztlicher Zemente sowie Restaurationsmaterialien steigt stetig. Die richtige Zementwahl für einen zuverlässigen Haftverbund zwischen Restaurationsmaterial und Zahnsubstanz ist von Interesse für den Kliniker. Ziel der vorliegenden in vitro-Studie war es daher, den Dentinhaftverbund von verschiedenen Zementen in Kombination mit verschiedenen indirekten Restaurationsmaterialien zu untersuchen. Material und Methoden: Zylindrische Probekörper aus sechs Restaurationsmaterialien (Goldlegierung, Titan, Feldspat-Keramik, Leuzit-Glaskeramik, Zirkon sowie Komposit) wurden an einem Ende plangeschliffen und sandgestrahlt. Die Zylinder aus Feldspat-Keramik und Leuzit-Glaskeramik wurden zusätzlich mit Flusssäure geätzt und silanisiert. Die Zylinder wurden anschliessend mit acht Zementen auf plangeschliffenes Dentin extrahierter menschlicher Zähne zementiert (ein Zink-Phosphatzement (DeTrey Zinc), ein konventioneller Glasionomerzement (Fuji I), ein kunststoffmodifizierter Glasionomerzement (Fuji Plus), ein "etch-&-rinse" Kompositzement (Variolink II), zwei "self-etch" Kompositzemente (Panavia F2.0 und Multilink) und zwei "self-adhesive" Kompositzemente (RelyX Unicem Aplicap und Maxcem)). Nach einwöchiger Wasserlagerung bei 37°C wurden die Dentinhaftwerte der Zylinder (n=8 pro Gruppe) mittels Scherkraft-Test gemessen. Zusätzlich wurde das Frakturmuster unter dem Lichtmikroskop bestimmt. Die Haftwerte wurden mittels zweifaktorieller ANOVA und einem post hoc-Test analysiert (Signifikanzniveau α = 0.05). Resultate: Sowohl das Restaurationsmaterial wie auch der Zement hatten einen statistisch signifikanten Effekt auf den Haftverbund. Der Zink-Phosphatzement sowie beide Glasionomerzemente zeigten die niedrigsten Haftwerte. Die höchsten Haftwerte wurden mit beiden "self-etch" und einem der zwei "self-adhesive" Kompositzementen erzielt. Im Allgemeinen variierte das Frakturmuster deutlich je nach Zement und Restaurationsmaterial. Schlussfolgerungen: Der Dentinhaftverbund wurde stärker vom Zement beeinflusst als vom Restaurationsmaterial. Die Kompositzemente erzielten im Grossen und Ganzen die höchsten Haftwerte.
Resumo:
The aim of this study was to investigate the effect of the cement film thickness of a zinc phosphate or a resin cement on retention of untreated and pretreated root canal posts. Prefabricated zirconia posts (CosmoPost: 1.4 mm) and two types of luting cements (a zinc phosphate cement [DeTrey Zinc] and a self-etch adhesive resin cement [Panavia F2.0]) were used. After removal of the crowns of 360 extracted premolars, canines, or incisors, the root canals were prepared with a parallel-sided drill system to three different final diameters. Half the posts did not receive any pretreatment. The other half received tribochemical silicate coating according to the manufacturer's instructions. Posts were then luted in the prepared root canals (n=30 per group). Following water storage at 37°C for seven days, retention of the posts was determined by the pull-out method. Irrespective of the luting cement, pretreatment with tribochemical silicate coating significantly increased retention of the posts. Increased cement film thickness resulted in decreased retention of untreated posts and of pretreated posts luted with zinc phosphate cement. Increased cement film thickness had no influence on retention of pretreated posts luted with resin cement. Thus, retention of the posts was influenced by the type of luting cement, by the cement film thickness, and by the post pretreatment.
Resumo:
PURPOSE To investigate the influence of relative humidity and application time on bond strength to dentin of different classes of adhesive systems. MATERIALS AND METHODS A total of 360 extracted human molars were ground to mid-coronal dentin. The dentin specimens were treated with one of six adhesive systems (Syntac Classic, OptiBond FL, Clearfil SE Bond, AdheSE, Xeno Select, or Scotchbond Universal), and resin composite (Filtek Z250) was applied to the treated dentin surface under four experimental conditions (45% relative humidity/application time according to manufacturers' instructions; 45% relative humidity/reduced application time; 85% relative humidity/application time according to manufacturers' instructions; 85% relative humidity/reduced application time). After storage (37°C, 100% humidity, 24 h), shear bond strength (SBS) was measured and data analyzed with nonparametric ANOVA followed by Kruskal-Wallis tests and Mann-Whitney U-tests with Bonferroni-Holm correction for multiple testing (level of significance: α = 0.05). RESULTS Increased relative humidity and reduced application time had no effect on SBS for Clearfil SE Bond and Scotchbond Universal (p = 1.00). For Syntac Classic, OptiBond FL, AdheSE, and Xeno Select there was no effect on SBS of reduced application time of the adhesive system (p ≥ 0.403). However, increased relative humidity significantly reduced SBS for Syntac Classic, OptiBond FL, and Xeno Select irrespective of application time (p ≤ 0.003), whereas for AdheSE, increased relative humidity significantly reduced SBS at recommended application time only (p = 0.002). CONCLUSION Generally, increased relative humidity had a detrimental effect on SBS to dentin, but reduced application time had no effect.
Resumo:
OBJECTIVES: To determine the effect on resin composite-to-dentin bond strength of incorporation of an acidic tin-chloride pretreatment in two adhesive systems. MATERIALS AND METHODS: Human molars were ground to expose mid-coronal dentin. For microtensile bond strength (μTBS) testing, dentin was treated with Optibond FL or Clearfil SE according to one of six protocols (n = 22/group). Group 1: Phosphoric acid etching, Optibond FL Prime, Optibond FL Adhesive (manufacturer's instructions; control); Group 2: Tin-chloride pretreatment, Optibond FL Prime, Optibond FL Adhesive; Group 3: Phosphoric acid etching, tin-chloride pretreatment, Optibond FL Prime, Optibond FL Adhesive; Group 4: Clearfil SE Primer, Clearfil SE Bond (manufacturer's instructions; control); Group 5: Phosphoric acid etching, Clearfil SE Primer, Clearfil SE Bond; and Group 6: Tin-chloride pretreatment, Clearfil SE Primer, Clearfil SE Bond. The molars were then built up with resin composite (Clearfil Majesty Esthetic). After storage (1 week, 100 % humidity, 37 °C) the μTBS was measured and failure mode was determined. Additionally, pretreated dentin surfaces were evaluated using SEM and EDX. The μTBS results were analyzed statistically by a Welch Two Sample t-test and a Kruskal-Wallis test followed by exact Wilcoxon rank sum tests with Bonferroni-Holm adjustment for multiple testing (α = 0.05). RESULTS: When Optibond FL was used, partial or total replacement of phosphoric acid with tin-chloride decreased μTBS significantly. In contrast, when Clearfil SE was used, inclusion of a tin-chloride pretreatment in the adhesive procedure increased μTBS significantly. CONCLUSIONS: Tin-chloride pretreatment had a beneficial influence on the bond promoting capacity of the MDP-containing adhesive system Clearfil SE.
Resumo:
OBJECTIVES The study investigated the modification of composite-to-enamel bond strength by pre-treatment of enamel with a concentrated, acidic SnCl2-solution. METHODS Six groups of flat human enamel specimens (n=44 per group) were treated as follows: OB-H: H3PO4 etching, Optibond FL application (primer+adhesive; manufacturer's instructions); OB-S: SnCl2 pre-treatment, Optibond FL application (primer+adhesive); OB-HS: H3PO4 etching+SnCl2 pre-treatment, Optibond FL application (primer+adhesive); CF-N: Clearfil SE application (primer+bond; manufacturer's instructions); CF-H: H3PO4 etching, Clearfil SE application (primer+bond); CF-S: SnCl2 pre-treatment, Clearfil SE application (primer+bond). Enamel specimens were then built up with resin composite (Clearfil Majesty Esthetic) and stored (100% humidity, 37 °C, 1 week). μTBS-measurement and failure mode analysis of one-half of the specimens were performed immediately after storage, while the other half was analysed after a thermocycling procedure (8500 cycles; 5 °C and 55 °C; dwell time 30s). Additional specimens were prepared for SEM- and EDX-analysis. RESULTS Highest values were measured for OB-H before and after thermocycling, lowest values for CF-N. Compared to OB-H treatment, OB-S treatment reduced μTBS before/after thermocycling by 23%/28% and OB-HS treatment by 8%/24% (except for OB-SH before (n.s.), all p≤0.001 compared to OB-H). In the Clearfil SE treated groups pre-treatment increased μTBS significantly compared to CF-N (before/after: CF-H: +46%/+70%; CF-S: +51%/42%; all p≤0.001). CONCLUSION Pre-treatment with H3PO4 or SnCl2 markedly increased the μTBS of Clearfil SE to enamel. However, thermocycling partly reduced the gain in μTBS obtained by SnCl2 pre-treatment. CLINICAL SIGNIFICANCE The application of an acidic and highly concentrated SnCl2 solution is a good option to increase the μTBS between enamel and a resin composite mediated by an adhesive system containing the multifunctional monomer MDP.
Resumo:
OBJECTIVES To investigate the influence of increment thickness on Vickers microhardness (HV) and shear bond strength (SBS) to dentin of a conventional and four bulk fill resin composites. METHODS HV and SBS were determined on specimens of the conventional resin composite Filtek Supreme XTE (XTE) and the bulk fill resin composites SDR (SDR), Filtek Bulk Fill (FBF), x-tra fil (XFIL), and Tetric EvoCeram Bulk Fill (TEBF) after 24h storage. HV was measured either as profiles at depths up to 6mm or at the bottom of 2mm/4mm/6mm thick resin composite specimens. SBS of 2mm/4mm/6mm thick resin composite increments was measured to dentin surfaces of extracted human molars treated with the adhesive system OptiBond FL, and the failure mode was stereomicroscopically determined at 40× magnification. HV profiles and failure modes were descriptively analysed whereas HV at the bottom of resin composite specimens and SBS were statistically analysed with nonparametric ANOVA followed by Wilcoxon rank sum tests (α=0.05). RESULTS HV profiles (medians at 2mm/4mm/6mm): XTE 105.6/88.8/38.3, SDR 34.0/35.5/36.9, FBF 36.4/38.7/37.1, XFIL 103.4/103.9/101.9, TEBF 63.5/59.7/51.9. HV at the bottom of resin composite specimens (medians at 2mm/4mm/6mm): XTE (p<0.0001) 105.5>85.5>31.1, SDR (p=0.10) 25.8=21.9=26.0, FBF (p=0.16) 26.6=25.3=28.9, XFIL (p=0.18) 110.5=107.2=101.9, TEBF (p<0.0001) 63.0>54.9>48.2. SBS (MPa, medians at 2mm/4mm/6mm): XTE (p<0.0001) 23.9>18.9=16.7, SDR (p=0.26) 24.6=22.7=23.4, FBF (p=0.11) 21.4=20.3=22.0, x-tra fil (p=0.55) 27.0=24.0=23.6, TEBF (p=0.11) 21.0=20.7=19.0. The predominant SBS failure mode was cohesive failure in dentin. SIGNIFICANCE At increasing increment thickness, HV and SBS decreased for the conventional resin composite but generally remained constant for the bulk fill resin composites.
Resumo:
PURPOSE To determine the impact of long-term storage on adhesion between titanium and zirconia using resin cements. MATERIALS AND METHODS Titanium grade 4 blocks were adhesively fixed onto zirconia disks with four resin cements: Panavia F 2.0 (Kuraray Europe), GC G-Cem (GC Europe), RelyX Unicem (3M ESPE), and SmartCem 2 (Dentsply DeguDent). Shear bond strength was determined after storage in a water bath for 24 h, 16, 90, and 150 days at 37°C, and after 6000 cycles between 5°C and 55°C. Fracture behavior was evaluated using scanning electron microscopy. RESULTS After storage for at least 90 days and after thermocycling, GC G-Cem (16.9 MPa and 15.1 MPa, respectively) and RelyX Unicem (10.8 MPa and 15.7 MPa, respectively) achieved higher shear bond strength compared to SmartCem 2 (7.1 MPa and 4.0 MPa, respectively) and Panavia F2 (4.1 MPa and 7.4 MPa, respectively). At day 150, GC G-Cem and RelyX Unicem caused exclusively mixed fractures. SmartCem 2 and Panavia F2 showed adhesive fractures in one-third of the cases; all other fractures were of mixed type. After 24 h (GC G-Cem: 26.0, RelyX Unicem: 20.5 MPa, SmartCem 2: 16.1 MPa, Panavia F2: 23.6 MPa) and 16 days (GC G-Cem: 12.8, RelyX Unicem: 14.2 MPa, SmartCem 2: 9.8 MPa, Panavia F2: 14.7 MPa) of storage, shear bond strength was similar among the four cements. CONCLUSION Long-term storage and thermocycling differentially affects the bonding of resin cement between titanium and zirconia.