13 resultados para a-stable processes
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Foliar samples were harvested from two oaks, a beech, and a yew at the same site in order to trace the development of the leaves over an entire vegetation season. Cellulose yield and stable isotopic compositions (δ13C, δ18O, and δD) were analyzed on leaf cellulose. All parameters unequivocally define a juvenile and a mature period in the foliar expansion of each species. The accompanying shifts of the δ13C-values are in agreement with the transition from remobilized carbohydrates (juvenile period), to current photosynthates (mature phase). While the opponent seasonal trends of δ18O of blade and vein cellulose are in perfect agreement with the state-of-art mechanistic understanding, the lack of this discrepancy for δD, documented for the first time, is unexpected. For example, the offset range of 18 permil (oak veins) to 57 permil (oak blades) in δD may represent a process driven shift from autotrophic to heterotrophic processes. The shared pattern between blade and vein found for both oak and beech suggests an overwhelming metabolic isotope effect on δD that might be accompanied by proton transfer linked to the Calvin-cycle. These results provide strong evidence that hydrogen and oxygen are under different biochemical controls even at the leaf level.
Resumo:
Previous studies have shown both declining and stable semantic-memory abilities during healthy aging. There is consistent evidence that semantic processes involving controlled mechanisms weaken with age. In contrast, results of aging studies on automatic semantic retrieval are often inconsistent, probably due to methodological limitations and differences. The present study therefore examines age-related alterations in automatic semantic retrieval and memory structure with a novel combination of critical methodological factors, i.e., the selection of subjects, a well-designed paradigm, and electrophysiological methods that result in unambiguous signal markers. Healthy young and elderly participants performed lexical decisions on visually presented word/non-word pairs with a stimulus onset asynchrony (SOA) of 150 ms. Behavioral and electrophysiological data were measured, and the N400-LPC complex, an event-related potential component sensitive to lexical-semantic retrieval, was analyzed by power and topographic distribution of electrical brain activity. Both age groups exhibited semantic priming (SP) and concreteness effects in behavioral reaction time and the electrophysiological N400-LPC complex. Importantly, elderly subjects did not differ significantly from the young in their lexical decision and SP performances as well as in the N400-LPC SP effect. The only difference was an age-related delay measured in the N400-LPC microstate. This could be attributed to existing age effects in controlled functions, as further supported by the replicated age difference in word fluency. The present results add new behavioral and neurophysiological evidence to earlier findings, by showing that automatic semantic retrieval remains stable in global signal strength and topographic distribution during healthy aging.
Resumo:
We consider percolation properties of the Boolean model generated by a Gibbs point process and balls with deterministic radius. We show that for a large class of Gibbs point processes there exists a critical activity, such that percolation occurs a.s. above criticality. For locally stable Gibbs point processes we show a converse result, i.e. they do not percolate a.s. at low activity.
Resumo:
The reconstruction of the stable carbon isotope evolution in atmospheric CO2 (δ13Catm), as archived in Antarctic ice cores, bears the potential to disentangle the contributions of the different carbon cycle fluxes causing past CO2 variations. Here we present a new record of δ13Catm before, during and after the Marine Isotope Stage 5.5 (155 000 to 105 000 yr BP). The dataset is archived on the data repository PANGEA® (www.pangea.de) under 10.1594/PANGAEA.817041. The record was derived with a well established sublimation method using ice from the EPICA Dome C (EDC) and the Talos Dome ice cores in East Antarctica. We find a 0.4‰ shift to heavier values between the mean δ13Catm level in the Penultimate (~ 140 000 yr BP) and Last Glacial Maximum (~ 22 000 yr BP), which can be explained by either (i) changes in the isotopic composition or (ii) intensity of the carbon input fluxes to the combined ocean/atmosphere carbon reservoir or (iii) by long-term peat buildup. Our isotopic data suggest that the carbon cycle evolution along Termination II and the subsequent interglacial was controlled by essentially the same processes as during the last 24 000 yr, but with different phasing and magnitudes. Furthermore, a 5000 yr lag in the CO2 decline relative to EDC temperatures is confirmed during the glacial inception at the end of MIS5.5 (120 000 yr BP). Based on our isotopic data this lag can be explained by terrestrial carbon release and carbonate compensation.
Resumo:
The spatial distributions of non-reactive natural tracers (anions, stable water isotopes, noble gases) in pore water of clay-rich formations were studied at nine sites. Regular curved profiles were identified in most cases. Transport modeling considering diffusion, advection and available constraints on the paleo-hydrogeological evolution indicates generally that diffusion alone can explain the observations, whereas a marked advective component would distort the profiles and so is not consistent with the data.
Resumo:
Karst aquifers are known for their wide distribution of water transfer velocities. From this observation, a multiple geochemical tracer approach seems to be particularly well suited to provide a significant assessment of groundwater flows, but the choice of adapted tracers is essential. In this study, several common tracers in karst aquifers such as physicochemical parameters, major ions, stable isotopes, and d13C to more specific tracers such as dating tracers – 14C, 3H, 3H–3He, CFC-12, SF6 and 85Kr, and 39Ar – were used, in a fractured karstic carbonated aquifer located in Burgundy (France). The information carried by each tracer and the best sampling strategy are compared on the basis of geochemical monitoring done during several recharge events and over longer time periods (months to years). This study’s results demonstrate that at the seasonal and recharge event time scale, the variability of concentrations is low for most tracers due to the broad spectrum of groundwater mixings. The tracers used traditionally for the study of karst aquifers, i.e., physicochemical parameters and major ions, efficiently describe hydrological processes such as the direct and differed recharge, but require being monitored at short time steps during recharge events to be maximized. From stable isotopes, tritium, and Cl� contents, the proportion of the fast direct recharge by the largest porosity was estimated using a binary mixing model. The use of tracers such as CFC-12, SF6, and 85Kr in karst aquifers provides additional information, notably an estimation of apparent age, but they require good preliminary knowledge of the karst system to interpret the results suitably. The CFC-12 and SF6 methods efficiently determine the apparent age of baseflow, but it is preferable to sample the groundwater during the recharge event. Furthermore, these methods are based on different assumptions such as regional enrichment in atmospheric SF6, excess air, and flow models among others. 85Kr and 39Ar concentrations can potentially provide a more direct estimation of groundwater residence time. Conversely, the 3H–3He method is inefficient in the karst aquifer for dating due to 3He degassing.
Resumo:
The stable isotopic composition of fossil resting eggs (ephippia) of Daphnia spp. is being used to reconstruct past environmental conditions in lake ecosystems. However, the underlying assumption that the stable isotopic composition of the ephippia reflects the stable isotopic composition of the parent Daphnia, of their diet and of the environmental water have yet to be confirmed in a controlled experimental setting. We performed experiments with Daphnia pulicaria cultures, which included a control treatment conducted at 12 °C in filtered lake water and with a diet of fresh algae and three treatments in which we manipulated the stable carbon isotopic composition (δ13C value) of the algae, stable oxygen isotopic composition (δ18O value) of the water and the water temperature, respectively. The stable nitrogen isotopic composition (δ15N value) of the algae was similar for all treatments. At 12 °C, differences in algal δ13C values and in δ18O values of water were reflected in those of Daphnia. The differences between ephippia and Daphnia stable isotope ratios were similar in the different treatments (δ13C: +0.2 ± 0.4 ‰ (standard deviation); δ15N: −1.6 ± 0.4 ‰; δ18O: −0.9 ± 0.4 ‰), indicating that changes in dietary δ13C values and in δ18O values of water are passed on to these fossilizing structures. A higher water temperature (20 °C) resulted in lower δ13C values in Daphnia and ephippia than in the other treatments with the same food source and in a minor change in the difference between δ13C values of ephippia and Daphnia (to −1.3 ± 0.3 ‰). This may have been due to microbial processes or increased algal respiration rates in the experimental containers, which may not affect Daphnia in natural environments. There was no significant difference in the offset between δ18O and δ15N values of ephippia and Daphnia between the 12 and 20 °C treatments, but the δ18O values of Daphnia and ephippia were on average 1.2 ‰ lower at 20 °C than at 12 °C. We conclude that the stable isotopic composition of Daphnia ephippia provides information on that of the parent Daphnia and of the food and water they were exposed to, with small offsets between Daphnia and ephippia relative to variations in Daphnia stable isotopic composition reported from downcore studies. However, our experiments also indicate that temperature may have a minor influence on the δ13C, δ15N and δ18O values of Daphnia body tissue and ephippia. This aspect deserves attention in further controlled experiments.
Resumo:
We present precise iron stable isotope ratios measured by multicollector-ICP mass spectrometry (MC-ICP-MS) of human red blood cells (erythrocytes) and blood plasma from 12 healthy male adults taken during a clinical study. The accurate determination of stable isotope ratios in plasma first required substantial method development work, as minor iron amounts in plasma had to be separated from a large organic matrix prior to mass-spectrometric analysis to avoid spectroscopic interferences and shifts in the mass spectrometer's mass-bias. The 56Fe/54Fe ratio in erythrocytes, expressed as permil difference from the “IRMM-014” iron reference standard (δ56/54Fe), ranges from −3.1‰ to −2.2‰, a range typical for male Caucasian adults. The individual subject erythrocyte iron isotope composition can be regarded as uniform over the 21 days investigated, as variations (±0.059 to ±0.15‰) are mostly within the analytical precision of reference materials. In plasma, δ56/54Fe values measured in two different laboratories range from −3.0‰ to −2.0‰, and are on average 0.24‰ higher than those in erythrocytes. However, this difference is barely resolvable within one standard deviation of the differences (0.22‰). Taking into account the possible contamination due to hemolysis (iron concentrations are only 0.4 to 2 ppm in plasma compared to approx. 480 ppm in erythrocytes), we model the pure plasma δ56/54Fe to be on average 0.4‰ higher than that in erythrocytes. Hence, the plasma iron isotope signature lies between that of the liver and that of erythrocytes. This difference can be explained by redox processes involved during cycling of iron between transferrin and ferritin.
Resumo:
Several theories assume that successful team coordination is partly based on knowledge that helps anticipating individual contributions necessary in a situational task. It has been argued that a more ecological perspective needs to be considered in contexts evolving dynamically and unpredictably. In football, defensive plays are usually coordinated according to strategic concepts spanning all members and large areas of the playfield. On the other hand, fewer people are involved in offensive plays as these are less projectable and strongly constrained by ecological characteristics. The aim of this study is to test the effects of ecological constraints and player knowledge on decision making in offensive game scenarios. It is hypothesized that both knowledge about team members and situational constraints will influence decisional processes. Effects of situational constraints are expected to be of higher magnitude. Two teams playing in the fourth league of the Swiss Football Federation participate in the study. Forty customized game scenarios were developed based on the coaches’ information about player positions and game strategies. Each player was shown in ball possession four times. Participants were asked to take the perspective of the player on the ball and to choose a passing destination and a recipient. Participants then rated domain specific strengths (e.g., technical skills, game intelligence) of each of their teammates. Multilevel models for categorical dependent variables (team members) will be specified. Player knowledge (rated skills) and ecological constraints (operationalized as each players’ proximity and availability for ball reception) are included as predictor variables. Data are currently being collected. Results will yield effects of parameters that are stable across situations as well as of variable parameters that are bound to situational context. These will enable insight into the degree to which ecological constraints and more enduring team knowledge are involved in decisional processes aimed at coordinating interpersonal action.
Resumo:
Variations in barium (Ba) stable isotope abundances measured in low and high temperature environments have recently received increasing attention. The actual processes controlling Ba isotope fractionation, however, remain mostly elusive. In this study, we present the first experimental approach to quantify the contribution of diffusion and adsorption on mass- dependent Ba isotope fractionation during transport of aqueous Ba2+ ions through a porous medium. Experiments have been carried out in which a BaCl2 solution of known isotopic composition diffused through u-shaped glass tubes filled with silica hydrogel at 10 C and 25 C for up to 201 days. The diffused Ba was highly fractionated by up to -2.15‰ in d137/134Ba, despite the low relative difference in atomic mass. The time-dependent isotope fractionation can be successfully reproduced by a diffusive transport model accounting for mass-dependent differences in the effective diffusivities of the Ba isotope species (D137Ba/D134Ba = (m134/m137)^b). Values of b extracted from the transport model were in the range of 0.010–0.011. Independently conducted batch experiments revealed that adsorption of Ba onto the surface of silica hydrogel favoured the heavier Ba isotopes (a = 1.00015 ± 0.00008). The contribution of adsorption on the overall isotope fractionation in the diffusion experiments, however, was found to be small. Our results contribute to the understanding of Ba isotope fractionation pro- cesses, which is crucial for interpreting natural isotope variations and the assessment of Ba isotope ratios as geochemical proxies.
Resumo:
We present new δ¹³C measurements of atmospheric CO₂ covering the last glacial/interglacial cycle, complementing previous records covering Terminations I and II. Most prominent in the new record is a significant depletion in δ¹³C(atm) of 0.5‰ occurring during marine isotope stage (MIS) 4, followed by an enrichment of the same magnitude at the beginning of MIS 3. Such a significant excursion in the record is otherwise only observed at glacial terminations, suggesting that similar processes were at play, such as changing sea surface temperatures, changes in marine biological export in the Southern Ocean (SO) due to variations in aeolian iron fluxes, changes in the Atlantic meridional overturning circulation, upwelling of deep water in the SO, and long-term trends in terrestrial carbon storage. Based on previous modeling studies, we propose constraints on some of these processes during specific time intervals. The decrease in δ¹³C(atm) at the end of MIS 4 starting approximately 64 kyr B.P. was accompanied by increasing [CO₂]. This period is also marked by a decrease in aeolian iron flux to the SO, followed by an increase in SO upwelling during Heinrich event 6, indicating that it is likely that a large amount of δ¹³C-depleted carbon was transferred to the deep oceans previously, i.e., at the onset of MIS 4. Apart from the upwelling event at the end of MIS 4 (and potentially smaller events during Heinrich events in MIS 3), upwelling of deep water in the SO remained reduced until the last glacial termination, whereupon a second pulse of isotopically light carbon was released into the atmosphere.