10 resultados para YOUNGS MODULUS

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

For the development of meniscal substitutes and related finite element models it is necessary to know the mechanical properties of the meniscus and its attachments. Measurement errors can falsify the determination of material properties. Therefore the impact of metrological and geometrical measurement errors on the determination of the linear modulus of human meniscal attachments was investigated. After total differentiation the error of the force (+0.10%), attachment deformation (−0.16%), and fibre length (+0.11%) measurements almost annulled each other. The error of the cross-sectional area determination ranged from 0.00%, gathered from histological slides, up to 14.22%, obtained from digital calliper measurements. Hence, total measurement error ranged from +0.05% to −14.17%, predominantly affected by the cross-sectional area determination error. Further investigations revealed that the entire cross-section was significantly larger compared to the load-carrying collagen fibre area. This overestimation of the cross-section area led to an underestimation of the linear modulus of up to −36.7%. Additionally, the cross-sections of the collagen-fibre area of the attachments significantly varied up to +90% along their longitudinal axis. The resultant ratio between the collagen fibre area and the histologically determined cross-sectional area ranged between 0.61 for the posterolateral and 0.69 for the posteromedial ligament. The linear modulus of human meniscal attachments can be significantly underestimated due to the use of different methods and locations of cross-sectional area determination. Hence, it is suggested to assess the load carrying collagen fibre area histologically, or, alternatively, to use the correction factors proposed in this study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vertebroplasty restores stiffness and strength of fractured vertebral bodies, but alters their stress transfer. This unwanted effect may be reduced by using more compliant cements. However, systematic experimental comparison of structural properties between standard and low-modulus augmentation needs to be done. This study investigated how standard and low-modulus cement augmentation affects apparent stiffness, strength, and endplate pressure distribution of vertebral body sections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To examine the Young's modulus of the human amniotic membranes, as well as its relationship to gestational age. To determine whether cellular and material-related parameters affect this modulus. STUDY DESIGN: In a prospective study at the Obstetric outpatient clinic of the University Hospital Zurich Young's modulus, thickness and mesenchymal:epithelial cell ratio of amniotic membranes of preterm (N=23) and term (N=40) placentae were examined. Significance (P<0.05) was calculated with the Mann-Whitney two-sample rank sum test and Wilcoxon signed rank test, while correlations were made using the Spearman's correlation. RESULTS: The Young's modulus of preterm amniotic membranes was significantly higher than that of term membranes. It varied within the same amniotic membrane. The thickness of the amnion in both preterm and term membranes did not differ significantly. The thinner the preterm and term amniotic membranes, the higher the Young's modulus was. There was no relation to the mesenchymal:epithelial cell ratio in the amnion. CONCLUSIONS: Preterm amniotic membranes are stiffer than term amniotic membranes. Tentatively, we hypothesise that there may be a correlation between the extracellular matrix components and the elastic properties of the membrane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PMMA is the most common bone substitute used for vertebroplasty. An increased fracture rate of the adjacent vertebrae has been observed after vertebroplasty. Decreased failure strength has been noted in a laboratory study of augmented functional spine units (FSUs), where the adjacent, non-augmented vertebral body always failed. This may provide evidence that rigid cement augmentation may facilitate the subsequent collapse of the adjacent vertebrae. The purpose of this study was to evaluate whether the decrease in failure strength of augmented FSUs can be avoided using low-modulus PMMA bone cement. In cadaveric FSUs, overall stiffness, failure strength and stiffness of the two vertebral bodies were determined under compression for both the treated and untreated specimens. Augmentation was performed on the caudal vertebrae with either regular or low-modulus PMMA. Endplate and wedge-shaped fractures occurred in the cranial and caudal vertebrae in the ratios endplate:wedge (cranial:caudal): 3:8 (5:6), 4:7 (7:4) and 10:1 (10:1) for control, low-modulus and regular cement group, respectively. The mean failure strength was 3.3 +/- 1 MPa with low-modulus cement, 2.9 +/- 1.2 MPa with regular cement and 3.6 +/- 1.3 MPa for the control group. Differences between the groups were not significant (p = 0.754 and p = 0.375, respectively, for low-modulus cement vs. control and regular cement vs. control). Overall FSU stiffness was not significantly affected by augmentation. Significant differences were observed for the stiffness differences of the cranial to the caudal vertebral body for the regular PMMA group to the other groups (p < 0.003). The individual vertebral stiffness values clearly showed the stiffening effect of the regular cement and the lesser alteration of the stiffness of the augmented vertebrae using the low-modulus PMMA compared to the control group (p = 0.999). In vitro biomechanical study and biomechanical evaluation of the hypothesis state that the failure strength of augmented functional spine units could be better preserved using low-modulus PMMA in comparison to regular PMMA cement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of polymethylmethacrylate (PMMA) cement to reinforce fragile or broken vertebral bodies (vertebroplasty) leads to extensive bone stiffening. Fractures in the adjacent vertebrae may be the consequence of this procedure. PMMA with a reduced Young's modulus may be more suitable. The goal of this study was to produce and characterize stiffness adapted PMMA bone cements. Porous PMMA bone cements were produced by combining PMMA with various volume fractions of an aqueous sodium hyaluronate solution. Porosity, Young's modulus, yield strength, polymerization temperature, setting time, viscosity, injectability, and monomer release of those porous cements were investigated. Samples presented pores with diameters in the range of 25-260 microm and porosity up to 56%. Young's modulus and yield strength decreased from 930 to 50 MPa and from 39 to 1.3 MPa between 0 and 56% porosity, respectively. The polymerization temperature decreased from 68 degrees C (0%, regular cement) to 41 degrees C for cement having 30% aqueous fraction. Setting time decreased from 1020 s (0%, regular cement) to 720 s for the 30% composition. Viscosity of the 30% composition (145 Pa s) was higher than the ones received from regular cement and the 45% composition (100-125 Pa s). The monomer release was in the range of 4-10 mg/mL for all porosities; showing no higher release for the porous materials. The generation of pores using an aqueous gel seems to be a promising method to make the PMMA cement more compliant and lower its mechanical properties to values close to those of cancellous bone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We develop a modulus method for surface families inside a domain in the Heisenberg group and we prove that the stretch map between two Heisenberg spherical rings is a minimiser for the mean distortion among the class of contact quasiconformal maps between these rings which satisfy certain boundary conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A carpet is a metric space homeomorphic to the Sierpiński carpet. We characterize, within a certain class of examples, non-self-similar carpets supporting curve families of nontrivial modulus and supporting Poincaré inequalities. Our results yield new examples of compact doubling metric measure spaces supporting Poincaré inequalities: these examples have no manifold points, yet embed isometrically as subsets of Euclidean space.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Relationships between mineralization, collagen orientation and indentation modulus were investigated in bone structural units from the mid-shaft of human femora using a site-matched design. Mineral mass fraction, collagen fibril angle and indentation moduli were measured in registered anatomical sites using backscattered electron imaging, polarized light microscopy and nano-indentation, respectively. Theoretical indentation moduli were calculated with a homogenization model from the quantified mineral densities and mean collagen fibril orientations. The average indentation moduli predicted based on local mineralization and collagen fibers arrangement were not significantly different from the average measured experimentally with nanoindentation (p=0.9). Surprisingly, no substantial correlation of the measured indentation moduli with tissue mineralization and/or collagen fiber arrangement was found. Nano-porosity, micro-damage, collagen cross-links, non-collagenous proteins or other parameters affect the indentation measurements. Additional testing/simulation methods need to be considered to properly understand the variability of indentation moduli, beyond the mineralization and collagen arrangement in bone structural units.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE To investigate how the modulus of elasticity of resin composites influences marginal quality in restorations submitted to thermocyclic and mechanical loading. METHODS Charisma, Filtek Supreme XTE and Grandio were selected as they were found to possess different moduli of elasticity but quite similar polymerization contraction. MOD cavities (n=30) were prepared in extracted premolars, restored and then subjected to thermocyclic and mechanical loading. Marginal quality of the restorations before and after loading was analyzed on epoxy replicas under a scanning electron microscope. The percentage of gap-free margins and occurrence of paramarginal fractures were registered. Modulus of elasticity and polymerization contraction were analyzed with parametric and margins with nonparametric ANOVA and post hoc Tukey HSD or Wilcoxon rank-sum tests, respectively. The number of paramarginal fractures was analyzed with exact Fisher tests (α=0.05). RESULTS Grandio demonstrated significantly more gap-free enamel margins than Charisma and Filtek Supreme XTE, before and after loading (p<0.01), whereas there was no difference between Charisma and Filtek Supreme XTE (p>0.05). No significant effect of resin composite (p=0.81) on the quality of dentine margins was observed, before or after loading. Deterioration of all margins was evident after loading (p<0.0001). More paramarginal enamel fractures were observed after loading in teeth restored with Grandio when compared to Charisma (p=0.008). CONCLUSIONS The resin composite with the highest modulus of elasticity resulted in the highest number of gap-free enamel margins but with an increased incidence of paramarginal enamel fractures. CLINICAL SIGNIFICANCE The results from this study suggest that the marginal quality of restorations can be improved by the selection of a resin composite with modulus of elasticity close to that of dentine, although an increase in paramarginal enamel fractures can result as a consequence.