95 resultados para Working Memory Training

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Memory impairments constitute an increasing objective and subjective problem with advancing age. The aim of the present study was to investigate the impact of working memory training on memory performance. The authors trained a sample of 80-year-old adults twice weekly over a time period of 3 months. Participants were tested on 4 different memory measures before, immediately after, and 1 year after training completion. The authors found overall increased memory performance in the experimental group compared to an active control group immediately after training completion. This increase was especially pronounced in visual working memory performance and, to a smaller degree, also in visual episodic memory. No group differences were found 1 year after training completion. The results indicate that even in old?old adults, brain plasticity is strong enough to result in transfer effects, that is, performance increases in tasks that were not trained during the intervention.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studies revealing transfer effects of working memory (WM) training on non-trained cognitive performance of children hold promising implications for scholastic learning. However, the results of existing training studies are not consistent and provoke debates about the potential and limitations of cognitive enhancement. To examine the influence of individual differences on training outcomes is a promising approach for finding causes for such inconsistencies. In this study, we implemented WM training in an elementary school setting. The aim was to investigate near and far transfer effects on cognitive abilities and academic achievement and to examine the moderating effects of a dispositional and a regulative temperament factor, neuroticism and effortful control. Ninetynine second-graders were randomly assigned to 20 sessions of computer-based adaptiveWMtraining, computer-based reading training, or a no-contact control group. For the WM training group, our analyses reveal near transfer on a visual WM task, far transfer on a vocabulary task as a proxy for crystallized intelligence, and increased academic achievement in reading and math by trend. Considering individual differences in temperament, we found that effortful control predicts larger training mean and gain scores and that there is a moderation effect of both temperament factors on post-training improvement: WM training condition predicted higher post-training gains compared to both control conditions only in children with high effortful control or low neuroticism. Our results suggest that a short but intensive WM training program can enhance cognitive abilities in children, but that sufficient selfregulative abilities and emotional stability are necessary for WM training to be effective.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Little research has been conducted to assess the effect of using memory training with school-aged children who were born very preterm. This study aimed to determine whether two types of memory training approaches resulted in an improvement of trained functions and/or a generalization of the training effect to non-trained cognitive domains. Methods: Sixty-eight children born very preterm (7¬-12 years) were randomly allocated to a group undertaking memory strategy training (n=23), working memory training (n=22), or a waiting control group (n=23). Neuropsychological assessment was performed before and immediately after the training or waiting period, and at a six-month follow-up. Results: In both training groups, significant improvement of different memory domains occurred immediately after training (near transfer). Improvement of non-trained arithmetic performance was observed after strategy training (far transfer). At a six-month follow-up assessment, children in both training groups demonstrated better working memory, and their parents rated their memory functions to be better than controls. Performance level before the training was negatively associated with the training gain. Conclusions: These results highlight the importance of cognitive interventions, in particular the teaching of memory strategies, in very preterm-born children at early school age to strengthen cognitive performance and prevent problems at school.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Little research has been conducted to assess the effect of using memory training with school aged children who were born very preterm. This study aimed to determine whether two types of memory training approaches resulted in an improvement of trained functions and/or a generalization of the training effect to non-trained cognitive domains. Methods: Sixty-eight children born very preterm (7-12 years) were randomly allocated to a group undertaking memory strategy training (n=23), working memory training (n=22), or a waiting control group (n=23). Neuropsychological assessment was performed before and immediately after the training or waiting period, and at a six-month follow-up. Results: In both training groups, significant improvement of different memory domains occurred immediately after training (near transfer). Improvement of non-trained arithmetic performance was observed after strategy training (far transfer). At a six-month follow-up assessment, children in both training groups demonstrated better working memory, and their parents rated their memory functions to be better than controls. Performance level before the training was negatively associated with the training gain. Conclusions: These results highlight the importance of cognitive interventions, in particular the teaching of memory strategies, in very preterm-born children at early school age to strengthen cognitive performance and prevent problems at school.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present synopsis aims to integrate one study about memory training in very preterm-born children and two studies about cognition in patients with carotid artery stenosis before and after treatments. Preterm-born children are at increased risk of cognitive deficits and behavioural problems compared with peers born at term. This thesis determined whether memory training would improve cognitive functions in school-age very preterm-born children. Memory strategy training produced significant improvements in trained and non-trained cognitive functions; a core working memory training revealed significant effects on short-term memory and working memory tasks. Six months after training, children in both training groups showed better working memory performance than children in the waiting control group. This is evidence that memory training – an external influence on cognition – induces plastic changes in very preterm-born children. Patients with carotid artery stenosis are known to be at increased risk of cognitive impairment. We showed that patients with symptomatic or asymptomatic carotid artery stenosis were at higher risk for cognitive deficits than expected in a normative sample. This thesis seeks to link cognitive plasticity to internal factors like carotid stenosis. An external factor, which influences blood flow to the brain is the nature of the carotid artery stenosis treatment. Research on the effects of carotid artery stenosis treatment on cognition has produced inconsistent results. We found significant improvement in frontal lobe functions, visual memory and motor speed one year after treatment independent of the treatment type (best medical treatment, carotid artery stenting, carotid artery endarterectomy); providing evidence for ‘treatment-induced’ cognitive plasticity. Baseline performance was negatively associated with improvement in various cognitive functions after training in very preterm-born children and after treatment in patients with carotid artery stenosis. The present synopsis aims to integrate these findings into the current and relevant literature, and discuss consequences as well as methodological considerations resulting from the studies constituting the thesis at hand.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently, multiple studies showed that spatial and temporal features of a task-negative default mode network (DMN) (Greicius et al., 2003) are important markers for psychiatric diseases (Balsters et al., 2013). Another prominent indicator of cognitive functioning, yielding information about the mental condition in health and disease, is working memory (WM) processing. In EEG and MEG studies, frontal-midline theta power has been shown to increase with load during WM retention in healthy subjects (Brookes et al., 2011). Negative correlations between DMN activity and theta amplitude have been found during resting state (Jann et al., 2010) as well as during WM (Michels et al., 2010). Likewise, WM training resulted in higher resting state theta power as well as increased small-worldness of the resting brain (Langer et al., 2013). Further, increased fMRI connectivity between nodes of the DMN correlated with better WM performance (Hampson et al., 2006). Hence, the brain’s default state might influence it’s functioning during task. We therefore hypothesized correlations between pre-stimulus DMN activity and EEG-theta power during WM maintenance, depending on the WM load. 17 healthy subjects performed a Sternberg WM task while being measured simultaneously with EEG and fMRI. Data was recorded within a multicenter-study: 12 subjects were measured in Zurich with a 64-channels MR-compatible system (Brain Products) in a 3T Philips scanner, 5 subjects with a 96-channel MR-compatible system (Brain Products) in a 3T Siemens Scanner in Bern. The DMN components was obtained by a group BOLD-ICA approach over the full task duration (figure 1). The subject-wise dynamics were obtained by back-reconstructed onto each subject’s fMRI data and normalized to percent signal change values. The single trial pre-stimulus-DMN activation was then temporally correlated with the single trial EEG-theta (3-8 Hz) spectral power during retention intervals. This so-called covariance mapping (Jann et al., 2010) yielded the spatial distribution of the theta EEG fluctuations during retention associated with the dynamics of the pre-stimulus DMN. In line with previous findings, theta power was increased at frontal-midline electrodes in high- versus low-load conditions during early WM retention (figure 2). However, correlations of DMN with theta power resulted in primarily positive correlations in low-load conditions, while during high-load conditions negative correlations of DMN activity and theta power were observed at frontal-midline electrodes. This DMN-dependent load effect reached significance in the middle of the retention period (TANOVA, p<0.05) (figure 3). Our results show a complex and load-dependent interaction of pre-stimulus DMN activity and theta power during retention, varying over time. While at a more global, load-independent view pre-stimulus DMN activity correlated positively with theta power during retention, the correlation was inversed during certain time windows in high-load trials, meaning that in trials with enhanced pre-stimulus DMN activity theta power decreases during retention. Since both WM performance and DMN activity are markers of mental health our results could be important for further investigations of psychiatric populations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE There is mixed evidence regarding neural change following cognitive training. Brain activation increase, decrease, or a combination of both may occur. We investigated training-induced neural change using two different memory training approaches. METHODS Very preterm born children (aged 7-12 years) were randomly allocated to a memory strategy training, an intensive working memory practice or a waiting control group. Before and immediately after the trainings and the waiting period, brain activation during a visual working memory task was measured using fMRI and cognitive performance was assessed. RESULTS Following both memory trainings, there was a significant decrease of fronto-parietal brain activation and a significant increase of memory performance. In the control group, no neural or performance change occurred after the waiting period. CONCLUSION These pilot data point towards a training-related decrease of brain activation, independent of the training approach. Our data highlight the high training-induced plasticity of the child's brain during development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE To assess possible effects of working memory (WM) training on cognitive functionality, functional MRI and brain connectivity in patients with juvenile MS. METHODS Cognitive status, fMRI and inter-network connectivity were assessed in 5 cases with juvenile MS aged between 12 and 18 years. Afterwards they received a computerized WM training for four weeks. Primary cognitive outcome measures were WM (visual and verbal) and alertness. Activation patterns related to WM were assessed during fMRI using an N-Back task with increasing difficulty. Inter-network connectivity analyses were focused on fronto-parietal (left and right), default-mode (dorsal and ventral) and the anterior salience network. Cognitive functioning, fMRI and inter-network connectivity were reassessed directly after the training and again nine months following training. RESULTS Response to treatment was seen in two patients. These patients showed increased performance in WM and alertness after the training. These behavioural changes were accompanied by increased WM network activation and systematic changes in inter-network connectivity. The remaining participants were non-responders to treatment. Effects on cognitive performance were maintained up to nine months after training, whereas effects observed by fMRI disappeared. CONCLUSIONS Responders revealed training effects on all applied outcome measures. Disease activity and general intelligence may be factors associated with response to treatment.