13 resultados para Vehicles by motive power.
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Balancing the frequently conflicting priorities of conservation and economic development poses a challenge to management of the Swiss Alps Jungfrau-Aletsch World Heritage Site (WHS). This is a complex societal problem that calls for a knowledge-based solution. This in turn requires a transdisciplinary research framework in which problems are defined and solved cooperatively by actors from the scientific community and the life-world. In this article we re-examine studies carried out in the region of the Swiss Alps Jungfrau-Aletsch WHS, covering three key issues prevalent in transdisciplinary settings: integration of stakeholders into participatory processes; perceptions and positions; and negotiability and implementation. In the case of the Swiss Alps Jungfrau-Aletsch WHS the transdisciplinary setting created a situation of mutual learning among stakeholders from different levels and backgrounds. However, the studies showed that the benefits of such processes of mutual learning are continuously at risk of being diminished by the power play inherent in participatory approaches.
Resumo:
Although women are thought to possess sexual power, they risk social and economic penalties (i.e., backlash; Rudman, 1998) when they self-sexualize (i.e., assert their power; Cahoon & Edmonds, 1989; Glick, Larsen, Johnson, & Branstiter, 2005). Why? Drawing on the status incongruity hypothesis (SIH), which predicts backlash against powerful women because they challenge the gender hierarchy, we expected prejudice against self-sexualizing women to be explained by a dominance penalty rather than a communality deficit (Rudman, Moss-Racusin, Phelan, & Nauts, 2012). Two experiments supported this hypothesis, and Experiment 3 further showed that the dominance penalty was explained by ascribing power motives to self-sexualized women. These findings extend the SIH’s utility to the domain of self-sexualization and illuminate the scope of people’s discomfort with female power. Implications for the advancement of gender equality are discussed.
Resumo:
Balancing the frequently conflicting priorities of conservation and economic development poses a challenge to management of the Swiss Alps Jungfrau- Aletsch World Heritage Site (WHS). This is a complex societal problem that calls for a knowledge-based solution. This in turn requires a transdisciplinary research framework in which problems are defined and solved cooperatively by actors from the scientific community and the life-world. In this article we re-examine studies carried out in the region of the Swiss Alps Jungfrau-Aletsch WHS, covering three key issues prevalent in transdisciplinary settings: integration of stakeholders into participatory processes; perceptions and positions; and negotiability and implementation. In the case of the Swiss Alps Jungfrau-Aletsch WHS the transdisciplinary setting created a situation of mutual learning among stakeholders from different levels and backgrounds. However, the studies showed that the benefits of such processes of mutual learning are continuously at risk of being diminished by the power play inherent in participatory approaches.
Resumo:
Heart rate variability (HRV) exhibits fluctuations characterized by a power law behavior of its power spectrum. The interpretation of this nonlinear HRV behavior, resulting from interactions between extracardiac regulatory mechanisms, could be clinically useful. However, the involvement of intrinsic variations of pacemaker rate in HRV has scarcely been investigated. We examined beating variability in spontaneously active incubating cultures of neonatal rat ventricular myocytes using microelectrode arrays. In networks of mathematical model pacemaker cells, we evaluated the variability induced by the stochastic gating of transmembrane currents and of calcium release channels and by the dynamic turnover of ion channels. In the cultures, spontaneous activity originated from a mobile focus. Both the beat-to-beat movement of the focus and beat rate variability exhibited a power law behavior. In the model networks, stochastic fluctuations in transmembrane currents and stochastic gating of calcium release channels did not reproduce the spatiotemporal patterns observed in vitro. In contrast, long-term correlations produced by the turnover of ion channels induced variability patterns with a power law behavior similar to those observed experimentally. Therefore, phenomena leading to long-term correlated variations in pacemaker cellular function may, in conjunction with extracardiac regulatory mechanisms, contribute to the nonlinear characteristics of HRV.
Resumo:
Management of the World Heritage Site Swiss Alps Jungfrau-Aletsch is challenged by the interplay of conservation and economic development. This is a situation where a knowledge-based solution is sought for a complex societal problem. This sets the frame for transdisciplinary research where the problem is defined and solved cooperatively by actors from science and the life-world. In this paper we re-examine studies carried out in the region of the WHS Jungfrau-Aletsch and reveal the issue of integration into participation, the issue of perceptions and positions as well as the issue of negotiability and implementation as key issues prevalent in transdisciplinary settings. The transdisciplinary setting in the case of the WHS Jungfrau-Aletsch constructs a situation of mutual learning among stakeholders from different levels and backgrounds. However, the positive effects of mutual learning are continuously challenged by the power play inherent in participatory approaches.
Resumo:
Aims. We derive for the first time the size-frequency distribution of boulders on a comet, 67P/Churyumov-Gerasimenko (67P), computed from the images taken by the Rosetta/OSIRIS imaging system. We highlight the possible physical processes that lead to these boulder size distributions. Methods. We used images acquired by the OSIRIS Narrow Angle Camera, NAC, on 5 and 6 August 2014. The scale of these images (2.44−2.03 m/px) is such that boulders ≥7 m can be identified and manually extracted from the datasets with the software ArcGIS. We derived both global and localized size-frequency distributions. The three-pixel sampling detection, coupled with the favorable shadowing of the surface (observation phase angle ranging from 48° to 53°), enables unequivocally detecting boulders scattered all over the illuminated side of 67P. Results. We identify 3546 boulders larger than 7 m on the imaged surface (36.4 km2), with a global number density of nearly 100/km2 and a cumulative size-frequency distribution represented by a power-law with index of −3.6 +0.2/−0.3. The two lobes of 67P appear to have slightly different distributions, with an index of −3.5 +0.2/−0.3 for the main lobe (body) and −4.0 +0.3/−0.2 for the small lobe (head). The steeper distribution of the small lobe might be due to a more pervasive fracturing. The difference of the distribution for the connecting region (neck) is much more significant, with an index value of −2.2 +0.2/−0.2. We propose that the boulder field located in the neck area is the result of blocks falling from the contiguous Hathor cliff. The lower slope of the size-frequency distribution we see today in the neck area might be due to the concurrent processes acting on the smallest boulders, such as i) disintegration or fragmentation and vanishing through sublimation; ii) uplifting by gas drag and consequent redistribution; and iii) burial beneath a debris blanket. We also derived the cumulative size-frequency distribution per km2 of localized areas on 67P. By comparing the cumulative size-frequency distributions of similar geomorphological settings, we derived similar power-law index values. This suggests that despite the selected locations on different and often opposite sides of the comet, similar sublimation or activity processes, pit formation or collapses, as well as thermal stresses or fracturing events occurred on multiple areas of the comet, shaping its surface into the appearance we see today.
Resumo:
Optical pulse amplification in doped fibers is studied using an extended power transport equation for the coupled pulse spectral components. This equation includes the effects of gain saturation, gain dispersion, fiber dispersion, fiber nonlinearity, and amplified spontaneous emission. The new model is employed to study nonlinear gain-induced effects on the spectrotemporal characteristics of amplified subpicosecond pulses, in both the anomalous and the normal dispersion regimes.
Resumo:
Research on performance and participation in (elite) sports has predominantly focused on variables relating to the achievement motive. However, some authors describe that athletes in interactive sports (e.g. tennis) are assumed to exhibit a strong power motive in order to win competitive matches, usually resulting in the demonstration of dominance or the experience of inferiority. The affiliation motive, by contrast, is not functional in elite sports due to their competitive rather than social character. In the present chapter we discuss how the three basic implicit motives of power, affiliation, and achievement relate to the sports field and describe how they can affect athletes’ performance. We present empirical evidence for the existence of different strengths of the three basic motives in three studies with elite athletes (Study 1), non-elite athletes (sport students, Study 2), and non-sport students infrequently involved in sports (Study 3). Our results suggest that elite athletes show higher levels of the implicit power motive compared to sport students, who in turn have higher power motives than non-sport students. Surprisingly, elite athletes do not differ from non-sport students regarding their implicit achievement motive. Moreover, non-sport students exhibit higher implicit affiliation motive scores than sport students and elite athletes. We propose that research on motivational processes of highly competitive athletes should – in addition to the achievement motive – focus more on motive themes like the implicit motives of power and affiliation.
Resumo:
We present a power-scalable approach for yellow laser-light generation based on standard Ytterbium (Yb) doped fibers. To force the cavity to lase at 1154 nm, far above the gain-maximum, measures must be taken to fulfill lasing condition and to suppress competing amplified spontaneous emission (ASE) in the high-gain region. To prove the principle we built a fiber-laser cavity and a fiber-amplifier both at 1154 nm. In between cavity and amplifier we suppressed the ASE by 70 dB using a fiber Bragg grating (FBG) based filter. Finally we demonstrated efficient single pass frequency doubling to 577 nm with a periodically poled lithium niobate crystal (PPLN). With our linearly polarized 1154 nm master oscillator power fiber amplifier (MOFA) system we achieved slope efficiencies of more than 15 % inside the cavity and 24 % with the fiber-amplifier. The frequency doubling followed the predicted optimal efficiency achievable with a PPLN crystal. So far we generated 1.5 W at 1154nm and 90 mW at 577 nm. Our MOFA approach for generation of 1154 nm laser radiation is power-scalable by using multi-stage amplifiers and large mode-area fibers and is therefore very promising for building a high power yellow laser-light source of several tens of Watt.