18 resultados para Variational calculus
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The demands of developing modern, highly dynamic applications have led to an increasing interest in dynamic programming languages and mechanisms. Not only applications must evolve over time, but the object models themselves may need to be adapted to the requirements of different run-time contexts. Class-based models and prototype-based models, for example, may need to co-exist to meet the demands of dynamically evolving applications. Multi-dimensional dispatch, fine-grained and dynamic software composition, and run-time evolution of behaviour are further examples of diverse mechanisms which may need to co-exist in a dynamically evolving run-time environment How can we model the semantics of these highly dynamic features, yet still offer some reasonable safety guarantees? To this end we present an original calculus in which objects can adapt their behaviour at run-time to changing contexts. Both objects and environments are represented by first-class mappings between variables and values. Message sends are dynamically resolved to method calls. Variables may be dynamically bound, making it possible to model a variety of dynamic mechanisms within the same calculus. Despite the highly dynamic nature of the calculus, safety properties are assured by a type assignment system.
Resumo:
The demands of developing modern, highly dynamic applications have led to an increasing interest in dynamic programming languages and mechanisms. Not only must applications evolve over time, but the object models themselves may need to be adapted to the requirements of different run-time contexts. Class-based models and prototype-based models, for example, may need to co-exist to meet the demands of dynamically evolving applications. Multi-dimensional dispatch, fine-grained and dynamic software composition, and run-time evolution of behaviour are further examples of diverse mechanisms which may need to co-exist in a dynamically evolving run-time environment. How can we model the semantics of these highly dynamic features, yet still offer some reasonable safety guarantees? To this end we present an original calculus in which objects can adapt their behaviour at run-time. Both objects and environments are represented by first-class mappings between variables and values. Message sends are dynamically resolved to method calls. Variables may be dynamically bound, making it possible to model a variety of dynamic mechanisms within the same calculus. Despite the highly dynamic nature of the calculus, safety properties are assured by a type assignment system.
Resumo:
In this paper we prove a Lions-type compactness embedding result for symmetric unbounded domains of the Heisenberg group. The natural group action on the Heisenberg group TeX is provided by the unitary group U(n) × {1} and its appropriate subgroups, which will be used to construct subspaces with specific symmetry and compactness properties in the Folland-Stein’s horizontal Sobolev space TeX. As an application, we study the multiplicity of solutions for a singular subelliptic problem by exploiting a technique of solving the Rubik-cube applied to subgroups of U(n) × {1}. In our approach we employ concentration compactness, group-theoretical arguments, and variational methods.
Resumo:
Social Networking Sites (SNSs) have become extremely popular around the world. They rely on user-generated content to offer engaging experience to its members. Cultural differences may influence the motivation of users to create and share content on SNS. This study adopts the privacy calculus perspective to examine the role of culture in individual self-disclosure decisions. The authors use structural equation modeling and multi-group analysis to investigate this dynamics. The findings reveal the importance of cultural dimensions of individualism and uncertainty avoidance in the cognitive processes of SNS users.