60 resultados para Ulva flexuosa subsp. pilifera
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
New tetracycline and streptomycin resistance genes, tet(44) and ant(6)-Ib, were identified in Campylobacter fetus subsp. fetus within a transferable pathogenicity island that is typically unique to Campylobacter fetus subsp. venerealis. The 640-amino-acid tetracycline resistance determinant, Tet 44, belongs to a class of proteins that confers resistance to tetracycline and minocycline by ribosomal protection. The 286-amino-acid streptomycin resistance determinant, ANT(6)-Ib, belongs to a family of aminoglycoside nucleotidyltransferases. The resistance phenotypes were demonstrated by gene inactivation and expression.
Resumo:
Control of contagious bovine pleuropneumonia (CBPP), caused by Mycoplasma mycoides subsp. mycoides Small Colony (MmmSC), remains an important goal in Africa. Subunit vaccines triggering B and T-cell responses could represent a promising approach. To this aim, the T-cell immunogenicity of four MmmSC lipoproteins (LppA, LppB, LppC and LppQ), present in African strains and able to elicit humoral response, was evaluated. In vitro assays revealed that only LppA was recognized by lymph node lymphocytes taken from three cattle, 3 weeks after MmmSC exposure. Maintenance of the LppA-specific response, relying on CD4 T-cells and IFN gamma production, was then demonstrated 1 year after infection. LppA is thus an important target for the CD4 T-cells generated early after MmmSC infection and persisting in the lymph nodes of recovered cattle. Its role as a protective antigen and ability to in vivo trigger both arms of the host immune response remain to be evaluated.
Resumo:
Contagious bovine pleuropneumonia (CBPP) is the most serious cattle disease in Africa, caused by Mycoplasma mycoides subsp. mycoides small-colony type (SC). CBPP control strategies currently rely on vaccination with a vaccine based on live attenuated strains of the organism. Recently, an lppQ(-) mutant of the existing vaccine strain T1/44 has been developed (Janis et al., 2008). This T1lppQ(-) mutant strain is devoid of lipoprotein LppQ, a potential virulence attribute of M. mycoides subsp. mycoides SC. It is designated as a potential live DIVA (Differentiating Infected from Vaccinated Animals) vaccine strain allowing both serological and etiological differentiation. The present paper reports on the validation of a control strategy for CBPP in cattle, whereby a TaqMan real-time PCR based on the lppQ gene has been developed for the direct detection of M. mycoides subsp. mycoides SC in ex vivo bronchoalveolar lavage fluids of cows and for the discrimination of wild type strains from the lppQ(-) mutant vaccine strain.
A metabolic enzyme as a primary virulence factor of Mycoplasma mycoides subsp. mycoides small colony
Resumo:
During evolution, pathogenic bacteria have developed complex interactions with their hosts. This has frequently involved the acquisition of virulence factors on pathogenicity islands, plasmids, transposons, or prophages, allowing them to colonize, survive, and replicate within the host. In contrast, Mycoplasma species, the smallest self-replicating organisms, have regressively evolved from gram-positive bacteria by reduction of the genome to a minimal size, with the consequence that they have economized their genetic resources. Hence, pathogenic Mycoplasma species lack typical primary virulence factors such as toxins, cytolysins, and invasins. Consequently, little is known how pathogenic Mycoplasma species cause host cell damage, inflammation, and disease. Here we identify a novel primary virulence determinant in Mycoplasma mycoides subsp. mycoides Small Colony (SC), which causes host cell injury. This virulence factor, released in significant amounts in the presence of glycerol in the growth medium, consists of toxic by-products such as H2O2 formed by l-alpha-glycerophosphate oxidase (GlpO), a membrane-located enzyme that is involved in the metabolism of glycerol. When embryonic calf nasal epithelial cells are infected with M. mycoides subsp. mycoides SC in the presence of physiological amounts of glycerol, H2O2 is released inside the cells prior to cell death. This process can be inhibited with monospecific anti-GlpO antibodies.
Resumo:
Mycoplasma mycoides subsp. capri and Mycoplasma mycoides subsp. mycoides LC can be combined into one taxon on the basis of several contributions on both DNA sequence and protein analyses reported in the literature. Moreover, for the differentiation and identification of mycoplasmas of the "mycoides cluster", we investigated the rpoB gene, encoding the beta-subunit of the RNA polymerase. A segment of 527 bp of the rpoB gene was amplified from 31 strains of ruminant mycoplasmas by PCR. The nucleotide sequences were determined and aligned, and accurate genetic relationships were calculated. Cluster analysis of rpoB DNA allowed species differentiation within the "mycoides cluster" and confirmed that M. mycoides subsp. capri and M. mycoides subsp. mycoides LC cannot be distinguished from each other. "Mycoplasma mycoides subsp. capri" is proposed as a common name for both subspecies.
Resumo:
The recently accomplished complete genomic sequence analysis of the type strain PG1 of Mycoplasma mycoides subsp. mycoides small-colony type revealed four large repeated segments of 24, 13, 12, and 8 kb that are flanked by insertion sequence (IS) elements. Genetic analysis of type strain PG1 and African, European, and Australian field and vaccine strains revealed that the 24-kb genetic locus is repeated only in PG1 and not in other M. mycoides subsp. mycoides SC strains. In contrast, the 13-kb genetic locus was found duplicated in some strains originating from Africa and Australia but not in strains that were isolated from the European outbreaks. The 12- and 8-kb genetic loci were found in two and three copies, respectively, in all 28 strains analyzed. The flanking IS elements are assumed to lead to these tandem duplications, thus contributing to genomic plasticity. This aspect must be considered when designing novel diagnostic approaches and recombinant vaccines.
Resumo:
Mycoplasma mycoides subsp. mycoides SC, the aetiological agent of contagious bovine pleuropneumonia (CBPP), is considered the most pathogenic of the Mycoplasma species. Its virulence is probably the result of a coordinated action of various components of an antigenically and functionally dynamic surface architecture. The different virulence attributes allow the pathogen to evade the host's immune defence, adhere tightly to the host cell surface, persist and disseminate in the host causing mycoplasmaemia, efficiently import energetically valuable nutrients present in the environment, and release and simultaneously translocate toxic metabolic pathway products to the host cell where they cause cytotoxic effects that are known to induce inflammatory processes and disease. This strategy enables the mycoplasma to exploit the minimal genetic information in its small genome, not only to fulfil the basic functions for its replication but also to damage host cells in intimate proximity thereby acquiring the necessary bio-molecules, such as amino acids and nucleic acid precursors, for its own biosynthesis and survival.
Resumo:
BACKGROUND: Contagious bovine pleuropneumonia (CBPP) caused by Mycoplasma mycoides subsp. mycoides small-colony type (SC) is among the most serious threats for livestock producers in Africa. Glycerol metabolism-associated H2O2 production seems to play a crucial role in virulence of this mycoplasma. A wide number of attenuated strains of M. mycoides subsp. mycoides SC are currently used in Africa as live vaccines. Glycerol metabolism is not affected in these vaccine strains and therefore it does not seem to be the determinant of their attenuation. A non-synonymous single nucleotide polymorphism (SNP) in the bgl gene coding for the 6-phospho-beta-glucosidase (Bgl) has been described recently. The SNP differentiates virulent African strains isolated from outbreaks with severe CBPP, which express the Bgl isoform Val204, from strains to be considered less virulent isolated from CBPP outbreaks with low mortality and vaccine strains, which express the Bgl isoform Ala204. RESULTS: Strains of M. mycoides subsp. mycoides SC considered virulent and possessing the Bgl isoform Val204, but not strains with the Bgl isoform Ala204, do trigger elevated levels of damage to embryonic bovine lung (EBL) cells upon incubation with the disaccharides (i.e., beta-D-glucosides) sucrose and lactose. However, strains expressing the Bgl isoform Val204 show a lower hydrolysing activity on the chromogenic substrate p-nitrophenyl-beta-D-glucopyranoside (pNPbG) when compared to strains that possess the Bgl isoform Ala204. Defective activity of Bgl in M. mycoides subsp. mycoides SC does not lead to H2O2 production. Rather, the viability during addition of beta-D-glucosides in medium-free buffers is higher for strains harbouring the Bgl isoform Val204 than for those with the isoform Ala204. CONCLUSION: Our results indicate that the studied SNP in the bgl gene is one possible cause of the difference in bacterial virulence among strains of M. mycoides subsp. mycoides SC. Bgl does not act as a direct virulence factor, but strains possessing the Bgl isoform Val204 with low hydrolysing activity are more prone to survive in environments that contain high levels of beta-D-glucosides, thus contributing in some extent to mycoplasmaemia.
Resumo:
The lipoprotein LppQ is the most prominent antigen of Mycoplasma mycoides subsp. mycoides small colony type (SC) during infection of cattle. This pathogen causes contagious bovine pleuropneumonia (CBPP), a devastating disease of considerable socio-economic importance in many countries worldwide. The dominant antigenicity and high specificity for M. mycoides subsp. mycoides SC of lipoprotein LppQ have been exploited for serological diagnosis and for epidemiological investigations of CBPP. Scanning electron microscopy and immunogold labelling were used to provide ultrastructural evidence that LppQ is located to the cell membrane at the outer surface of M. mycoides subsp. mycoides SC. The selectivity and specificity of this method were demonstrated through discriminating localization of extracellular (i.e., in the zone of contact with host cells) vs. integral membrane domains of LppQ. Thus, our findings support the suggestion that the accessible N-terminal domain of LppQ is surface exposed and such surface localization may be implicated in the pathogenesis of CBPP.
Resumo:
Infections by the bacterium Aeromonas salmonicida subsp. achromogenes cause significant disease in a number of fish species. In this study, we showed that AsaP1, a toxic 19-kDa metallopeptidase produced by A. salmonicida subsp. achromogenes, belongs to the group of extracellular peptidases (Aeromonas type) (MEROPS ID M35.003) of the deuterolysin family of zinc-dependent aspzincin endopeptidases. The structural gene of AsaP1 was sequenced and found to be highly conserved among gram-negative bacteria. An isogenic Delta asaP1 A. salmonicida subsp. achromogenes strain was constructed, and its ability to infect fish was compared with that of the wild-type (wt) strain. The Delta asaP1 strain was found to infect Arctic charr, Atlantic salmon, and Atlantic cod, but its virulence was decreased relative to that of the wt strain. The 50% lethal dose of the AsaP1 mutant was 10-fold higher in charr and 5-fold higher in salmon than that of the wt strain. The pathology induced by the AsaP1-deficient strain was also different from that of the wt strain. Furthermore, the mutant established significant bacterial colonization in all observed organs without any signs of a host response in the infected tissue. AsaP1 is therefore the first member of the M35 family that has been shown to be a bacterial virulence factor.
Resumo:
L-alpha-glycerophosphate oxidase (GlpO) plays a central role in virulence of Mycoplasma mycoides subsp. mycoides SC, a severe bacterial pathogen causing contagious bovine pleuropneumonia (CBPP). It is involved in production and translocation of toxic H(2)O(2) into the host cell, causing inflammation and cell death. The binding site on GlpO for the cofactor flavin adenine dinucleotide (FAD) has been identified as Gly(12)-Gly(13)-Gly(14)-Ile(15)-Ile(16)-Gly(17). Recombinant GlpO lacking these six amino acids (GlpODeltaFAD) was unable to bind FAD and was also devoid of glycerophosphate oxidase activity, in contrast to non-modified recombinant GlpO that binds FAD and is enzymatically active. Polyclonal monospecific antibodies directed against GlpODeltaFAD, similarly to anti-GlpO antibodies, neutralised H(2)O(2) production of M. mycoides subsp. mycoides SC grown in the presence of glycerol, as well as cytotoxicity towards embryonic calf nasal epithelial (ECaNEp) cells. The FAD-binding site of GlpO is therefore suggested as a valuable target site for the future construction of deletion mutants to yield attenuated live vaccines of M. mycoides subsp. mycoides SC necessary to efficiently combat CBPP.
Resumo:
Arctic char Salvelinus alpinus farmed in different places in Austria and free of the viral diseases viral haemorrhagic septcaemia (VHS), infectious haematopoietic necrosis (IHN) and infectious pancreatic necrosis (IPN) experienced disease and mortality. Diseased fish showed skin ulceration and pathological signs of sepsis. Aeromonas sp. was isolated as pure culture from the kidney of freshly euthanized diseased fish. Three independent isolates from outbreaks that occurred on 2 of the affected farms were analyzed phylogenetically by DNA sequence analysis of the rrs and gyrB genes and phenotypically with biochemical reactions. All 3 isolates were identified as Aeromonas salmonicida subsp. smithia. Analysis of virulence genes in these isolates revealed the presence of a Type III secretion system as well as several related virulence effector genes including aexT, encoding the Aeromonas exotoxin AexT, aopP and aopH. These genes are characteristic for virulent strains of typical and atypical subspecies of A. salmonicida.
Resumo:
The Mycoplasma mycoides cluster consists of six pathogenic mycoplasmas causing disease in ruminants, which share many genotypic and phenotypic traits. The M. mycoides cluster comprises five recognized taxa: Mycoplasma mycoides subsp. mycoides Small Colony (MmmSC), M. mycoides subsp. mycoides Large Colony (MmmLC), M. mycoides subsp. capri (Mmc), Mycoplasma capricolum subsp. capricolum (Mcc) and M. capricolum subsp. capripneumoniae (Mccp). The group of strains known as Mycoplasma sp. bovine group 7 of Leach (MBG7) has remained unassigned, due to conflicting data obtained by different classification methods. In the present paper, all available data, including recent phylogenetic analyses, have been reviewed, resulting in a proposal for an emended taxonomy of this cluster: (i) the MBG7 strains, although related phylogenetically to M. capricolum, hold sufficient characteristic traits to be assigned as a separate species, i.e. Mycoplasma leachii sp. nov. (type strain, PG50(T) = N29(T) = NCTC 10133(T) = DSM 21131(T)); (ii) MmmLC and Mmc, which can only be distinguished by serological methods and are related more distantly to MmmSC, should be combined into a single subspecies, i.e. Mycoplasma mycoides subsp. capri, leaving M. mycoides subsp. mycoides (MmmSC) as the exclusive designation for the agent of contagious bovine pleuropneumonia. A taxonomic description of M. leachii sp. nov. and emended descriptions of M. mycoides subsp. mycoides and M. mycoides subsp. capri are presented. As a result of these emendments, the M. mycoides cluster will hereafter be composed of five taxa comprising three subclusters, which correspond to the M. mycoides subspecies, the M. capricolum subspecies and the novel species M. leachii.
Resumo:
Gram-negative, aerobic, motile, rod-shaped bacteria were isolated from the intestines of freshwater fish on two separate occasions. Colonies of both strains, JF3835(T) and JF4413, produced non-diffusible green pigment following 4-5 days incubation on Luria-Bertani agar. The most abundant fatty acids were summed feature 3 (comprising C(16 : 1)ω7c and/or C(15 : 0) iso 2-OH), C(16 : 0) and C(18 : 1)ω7c. The DNA G+C content was 62.9 mol%. Sequence analysis of the 16S rRNA gene indicated 100 % sequence similarity between the two strains. In comparison with recognized species, the new strains exhibited the greatest degree of sequence similarity with members of the Pseudomonas chlororaphis subspecies: P. chlororaphis subsp. chlororaphis (99.84 %), P. chlororaphis subsp. aurantiaca (99.75 %) and P. chlororaphis subsp. aureofaciens (99.40 %). While DNA-DNA relatedness confirmed the placement of strains JF3835(T) and JF4413 as members of the species P. chlororaphis, multilocus sequencing indicated that the strains formed a distinct cluster within it. On the basis of genotypic and phenotypic evidence, strains JF3835(T) and JF4413 represent a novel subspecies of the species P. chlororaphis, for which the name Pseudomonas chlororaphis subsp. piscium subsp. nov. is proposed. The type strain is JF3835(T) (=NCIMB 14478(T)=DSM 21509(T)).