8 resultados para Transmitters.
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
We investigated the association between exposure to radio-frequency electromagnetic fields (RF-EMFs) from broadcast transmitters and childhood cancer. First, we conducted a time-to-event analysis including children under age 16 years living in Switzerland on December 5, 2000. Follow-up lasted until December 31, 2008. Second, all children living in Switzerland for some time between 1985 and 2008 were included in an incidence density cohort. RF-EMF exposure from broadcast transmitters was modeled. Based on 997 cancer cases, adjusted hazard ratios in the time-to-event analysis for the highest exposure category (>0.2 V/m) as compared with the reference category (<0.05 V/m) were 1.03 (95% confidence interval (CI): 0.74, 1.43) for all cancers, 0.55 (95% CI: 0.26, 1.19) for childhood leukemia, and 1.68 (95% CI: 0.98, 2.91) for childhood central nervous system (CNS) tumors. Results of the incidence density analysis, based on 4,246 cancer cases, were similar for all types of cancer and leukemia but did not indicate a CNS tumor risk (incidence rate ratio = 1.03, 95% CI: 0.73, 1.46). This large census-based cohort study did not suggest an association between predicted RF-EMF exposure from broadcasting and childhood leukemia. Results for CNS tumors were less consistent, but the most comprehensive analysis did not suggest an association.
Resumo:
We present a geospatial model to predict the radiofrequency electromagnetic field from fixed site transmitters for use in epidemiological exposure assessment. The proposed model extends an existing model toward the prediction of indoor exposure, that is, at the homes of potential study participants. The model is based on accurate operation parameters of all stationary transmitters of mobile communication base stations, and radio broadcast and television transmitters for an extended urban and suburban region in the Basel area (Switzerland). The model was evaluated by calculating Spearman rank correlations and weighted Cohen's kappa (kappa) statistics between the model predictions and measurements obtained at street level, in the homes of volunteers, and in front of the windows of these homes. The correlation coefficients of the numerical predictions with street level measurements were 0.64, with indoor measurements 0.66, and with window measurements 0.67. The kappa coefficients were 0.48 (95%-confidence interval: 0.35-0.61) for street level measurements, 0.44 (95%-CI: 0.32-0.57) for indoor measurements, and 0.53 (95%-CI: 0.42-0.65) for window measurements. Although the modeling of shielding effects by walls and roofs requires considerable simplifications of a complex environment, we found a comparable accuracy of the model for indoor and outdoor points.
Resumo:
Hypertension represents a complex, multifactorial disease and contributes to the major causes of morbidity and mortality in industrialized countries: ischemic and hypertensive heart disease, stroke, peripheral atherosclerosis and renal failure. Current pharmacological therapy of essential hypertension focuses on the regulation of vascular resistance by inhibition of hormones such as catecholamines and angiotensin II, blocking them from receptor activation. Interaction of G-protein coupled receptor kinases (GRKs) and regulator of G-protein signaling (RGS) proteins with activated G-protein coupled receptors (GPCRs) effect the phosphorylation state of the receptor leading to desensitization and can profoundly impair signaling. Defects in GPCR regulation via these modulators have severe consequences affecting GPCR-stimulated biological responses in pathological situations such as hypertension, since they fine-tune and balance the major transmitters of vessel constriction versus dilatation, thus representing valuable new targets for anti-hypertensive therapeutic strategies. Elevated levels of GRKs are associated with human hypertensive disease and are relevant modulators of blood pressure in animal models of hypertension. This implies therapeutic perspective in a disease that has a prevalence of 65million in the United States while being directly correlated with occurrence of major adverse cardiac and vascular events. Therefore, therapeutic approaches using the inhibition of GRKs to regulate GPCRs are intriguing novel targets for treatment of hypertension and heart failure.
Resumo:
We developed a geospatial model that calculates ambient high-frequency electromagnetic field (HF-EMF) strengths of stationary transmission installations such as mobile phone base stations and broadcast transmitters with high spatial resolution in the order of 1 m. The model considers the location and transmission patterns of the transmitters, the three-dimensional topography, and shielding effects by buildings. The aim of the present study was to assess the suitability of the model for exposure monitoring and for epidemiological research. We modeled time-averaged HF-EMF strengths for an urban area in the city of Basel as well as for a rural area (Bubendorf). To compare modeling with measurements, we selected 20 outdoor measurement sites in Basel and 18 sites in Bubendorf. We calculated Pearson's correlation coefficients between modeling and measurements. Chance-corrected agreement was evaluated by weighted Cohen's kappa statistics for three exposure categories. Correlation between measurements and modeling of the total HF-EMF strength was 0.67 (95% confidence interval (CI): 0.33-0.86) in the city of Basel and 0.77 (95% CI: 0.46-0.91) in the rural area. In both regions, kappa coefficients between measurements and modeling were 0.63 and 0.77 for the total HF-EMF strengths and for all mobile phone frequency bands. First evaluation of our geospatial model yielded substantial agreement between modeling and measurements. However, before the model can be applied for future epidemiologic research, additional validation studies focusing on indoor values are needed to improve model validity.Journal of Exposure Science and Environmental Epidemiology (2008) 18, 183-191; doi:10.1038/sj.jes.7500575; published online 4 April 2007.
Resumo:
Radio frequency electromagnetic fields (RF-EMF) in our daily life are caused by numerous sources such as fixed site transmitters (e.g. mobile phone base stations) or indoor devices (e.g. cordless phones). The objective of this study was to develop a prediction model which can be used to predict mean RF-EMF exposure from different sources for a large study population in epidemiological research. We collected personal RF-EMF exposure measurements of 166 volunteers from Basel, Switzerland, by means of portable exposure meters, which were carried during one week. For a validation study we repeated exposure measurements of 31 study participants 21 weeks after the measurements of the first week on average. These second measurements were not used for the model development. We used two data sources as exposure predictors: 1) a questionnaire on potentially exposure relevant characteristics and behaviors and 2) modeled RF-EMF from fixed site transmitters (mobile phone base stations, broadcast transmitters) at the participants' place of residence using a geospatial propagation model. Relevant exposure predictors, which were identified by means of multiple regression analysis, were the modeled RF-EMF at the participants' home from the propagation model, housing characteristics, ownership of communication devices (wireless LAN, mobile and cordless phones) and behavioral aspects such as amount of time spent in public transports. The proportion of variance explained (R2) by the final model was 0.52. The analysis of the agreement between calculated and measured RF-EMF showed a sensitivity of 0.56 and a specificity of 0.95 (cut-off: 90th percentile). In the validation study, the sensitivity and specificity of the model were 0.67 and 0.96, respectively. We could demonstrate that it is feasible to model personal RF-EMF exposure. Most importantly, our validation study suggests that the model can be used to assess average exposure over several months.
Resumo:
Background. Drug-resistant human immunodeficiency virus type 1 (HIV-1) minority variants (MVs) are present in some antiretroviral therapy (ART)–naive patients. They may result from de novo mutagenesis or transmission. To date, the latter has not been proven. Methods. MVs were quantified by allele-specific polymerase chain reaction in 204 acute or recent seroconverters from the Zurich Primary HIV Infection study and 382 ART-naive, chronically infected patients. Phylogenetic analyses identified transmission clusters. Results. Three lines of evidence were observed in support of transmission of MVs. First, potential transmitters were identified for 12 of 16 acute or recent seroconverters harboring M184V MVs. These variants were also detected in plasma and/or peripheral blood mononuclear cells at the estimated time of transmission in 3 of 4 potential transmitters who experienced virological failure accompanied by the selection of the M184V mutation before transmission. Second, prevalence between MVs harboring the frequent mutation M184V and the particularly uncommon integrase mutation N155H differed highly significantly in acute or recent seroconverters (8.2% vs 0.5%; P < .001). Third, the prevalence of less-fit M184V MVs is significantly higher in acutely or recently than in chronically HIV-1–infected patients (8.2% vs 2.5%; P = .004). Conclusions. Drug-resistant HIV-1 MVs can be transmitted. To what extent the origin—transmission vs sporadic appearance—of these variants determines their impact on ART needs to be further explored.
Resumo:
Stable wakefulness requires orexin/hypocretin neurons (OHNs) and OHR2 receptors. OHNs sense diverse environmental cues and control arousal accordingly. For unknown reasons, OHNs contain multiple excitatory transmitters, including OH peptides and glutamate. To analyze their cotransmission within computational frameworks for control, we optogenetically stimulated OHNs and examined resulting outputs (spike patterns) in a downstream arousal regulator, the histamine neurons (HANs). OHR2s were essential for sustained HAN outputs. OHR2-dependent HAN output increased linearly during constant OHN input, suggesting that the OHN→HAN(OHR2) module may function as an integral controller. OHN stimulation evoked OHR2-dependent slow postsynaptic currents, similar to midnanomolar OH concentrations. Conversely, glutamate-dependent output transiently communicated OHN input onset, peaking rapidly then decaying alongside OHN→HAN glutamate currents. Blocking glutamate-driven spiking did not affect OH-driven spiking and vice versa, suggesting isolation (low cross-modulation) of outputs. Therefore, in arousal regulators, cotransmitters may translate distinct features of OHN activity into parallel, nonredundant control signals for downstream effectors.
Resumo:
OBJECTIVE To analyze the transit time from various locations in the intestines of cows with cecal dilatation-dislocation (CDD), healthy control cows, and cows with left displacement of the abomasum (LDA). ANIMALS 15 cows with naturally occurring CDD (group 1), 14 healthy control cows (group 2), and 18 cows with LDA (group 3). PROCEDURES 5 electronic transmitters were encased in capsules and placed in the lumen of the ileum, cecum, proximal portion of the colon, and 2 locations in the spiral colon (colon 1 and colon 2) and used to measure the transit time (ie, time between placement in the lumen and excretion of the capsules from the rectum). Excretion time of the capsules from each intestinal segment was compared among groups. RESULTS Cows recovered well from surgery, except for 1 cow with relapse of CDD 4 days after surgery and 2 cows with incisional infection. High variability in capsule excretion times was observed for all examined intestinal segments in all groups. Significant differences were detected for the excretion time from the colon (greater in cows with CDD than in healthy control cows) and cecum (less in cows with LDA than in cows of the other 2 groups). CONCLUSIONS AND CLINICAL RELEVANCE The technique developed to measure excretion time of capsules from bovine intestines was safe and reliable; however, the large variability observed for all intestinal segments and all groups would appear to be a limitation for its use in assessment of intestinal transit time of cattle in future studies.