33 resultados para Time-domain analysis
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Time domain analysis of electroencephalography (EEG) can identify subsecond periods of quasi-stable brain states. These so-called microstates assumingly correspond to basic units of cognition and emotion. On the other hand, Global Field Synchronization (GFS) is a frequency domain measure to estimate functional synchronization of brain processes on a global level for each EEG frequency band [Koenig, T., Lehmann, D., Saito, N., Kuginuki, T., Kinoshita, T., Koukkou, M., 2001. Decreased functional connectivity of EEG theta-frequency activity in first-episode, neuroleptic-naive patients with schizophrenia: preliminary results. Schizophr Res. 50, 55-60.]. Using these time and frequency domain analyzes, several previous studies reported shortened microstate duration in specific microstate classes and decreased GFS in theta band in drug naïve schizophrenia compared to controls. The purpose of this study was to investigate changes of these EEG parameters after drug treatment in drug naïve schizophrenia. EEG analysis was performed in 21 drug-naive patients and 21 healthy controls. 14 patients were reevaluated 2-8 weeks (mean 4.3) after the initiation of drug administration. The results extended findings of treatment effect on brain functions in schizophrenia, and imply that shortened duration of specific microstate classes seems a state marker especially in patients with later neuroleptic responsive, while lower theta GFS seems a state-related phenomenon and that higher gamma GFS is a trait like phenomenon.
Resumo:
The aim of this work is to assess the repeatability of spectral-domain-OCT (SD-OCT) retinal nerve fiber layer thickness (RNFL) thickness measurements in a non-glaucoma group and patients with glaucoma and to compare these results to conventional time-domain-OCT (TD-OCT).
Resumo:
The original cefepime product was withdrawn from the Swiss market in January 2007 and replaced by a generic 10 months later. The goals of the study were to assess the impact of this cefepime shortage on the use and costs of alternative broad-spectrum antibiotics, on antibiotic policy, and on resistance of Pseudomonas aeruginosa toward carbapenems, ceftazidime, and piperacillin-tazobactam. A generalized regression-based interrupted time series model assessed how much the shortage changed the monthly use and costs of cefepime and of selected alternative broad-spectrum antibiotics (ceftazidime, imipenem-cilastatin, meropenem, piperacillin-tazobactam) in 15 Swiss acute care hospitals from January 2005 to December 2008. Resistance of P. aeruginosa was compared before and after the cefepime shortage. There was a statistically significant increase in the consumption of piperacillin-tazobactam in hospitals with definitive interruption of cefepime supply and of meropenem in hospitals with transient interruption of cefepime supply. Consumption of each alternative antibiotic tended to increase during the cefepime shortage and to decrease when the cefepime generic was released. These shifts were associated with significantly higher overall costs. There was no significant change in hospitals with uninterrupted cefepime supply. The alternative antibiotics for which an increase in consumption showed the strongest association with a progression of resistance were the carbapenems. The use of alternative antibiotics after cefepime withdrawal was associated with a significant increase in piperacillin-tazobactam and meropenem use and in overall costs and with a decrease in susceptibility of P. aeruginosa in hospitals. This warrants caution with regard to shortages and withdrawals of antibiotics.
Resumo:
The purpose of this study was to compare inter-observer agreement of Stratus™ OCT versus Spectralis™ OCT image grading in patients with neovascular age-related macular degeneration (AMD). Thirty eyes with neovascular AMD were examined with Stratus™ OCT and Spectralis™ OCT. Four different scan protocols were used for imaging. Three observers graded the images for the presence of various pathologies. Inter-observer agreement between OCT models was assessed by calculating intra-class correlation coefficients (ICC). In Stratus™ OCT highest interobserver agreement was found for subretinal fluid (ICC: 0.79), and in Spectralis™ OCT for intraretinal cysts (IRC) (ICC: 0.93). Spectralis™ OCT showed superior interobserver agreement for IRC and epiretinal membranes (ERM) (ICC(Stratus™): for IRC 0.61; for ERM 0.56; ICC(Spectralis™): for IRC 0.93; for ERM 0.84). Increased image resolution of Spectralis™ OCT did improve the inter-observer agreement for grading intraretinal cysts and epiretinal membranes but not for other retinal changes.
Resumo:
Objective: We compare the prognostic strength of the lymph node ratio (LNR), positive lymph nodes (+LNs) and collected lymph nodes (LNcoll) using a time-dependent analysis in colorectal cancer patients stratified by mismatch repair (MMR) status. Method: 580 stage III-IV patients were included. Multivariable Cox regression analysis and time-dependent receiver operating characteristic (tROC) curve analysis were performed. The Area under the Curve (AUC) over time was compared for the three features. Results were validated on a second cohort of 105 stage III-IV patients. Results: The AUC for the LNR was 0.71 and outperformed + LNs and LNcoll by 10–15 % in both MMR-proficient and deficient cancers. LNR and + LNs were both significant (p<0.0001) in multivariable analysis but the effect was considerably stronger for the LNR [LNR: HR=5.18 (95 % CI: 3.5–7.6); +LNs=1.06 (95 % CI: 1.04–1.08)]. Similar results were obtained for patients with >12 LNcoll. An optimal cut off score for LNR=0.231 was validated on the second cohort (p<0.001). Conclusion: The LNR outperforms the + LNs and LNcoll even in patients with >12 LNcoll. Its clinical value is not confounded by MMR status. A cut-of score of 0.231 may best stratify patients into prognostic subgroups and could be a basis for the future prospective analysis of the LNR.
Resumo:
We present an overview of different methods for decomposing a multichannel spontaneous electroencephalogram (EEG) into sets of temporal patterns and topographic distributions. All of the methods presented here consider the scalp electric field as the basic analysis entity in space. In time, the resolution of the methods is between milliseconds (time-domain analysis), subseconds (time- and frequency-domain analysis) and seconds (frequency-domain analysis). For any of these methods, we show that large parts of the data can be explained by a small number of topographic distributions. Physically, this implies that the brain regions that generated one of those topographies must have been active with a common phase. If several brain regions are producing EEG signals at the same time and frequency, they have a strong tendency to do this in a synchronized mode. This view is illustrated by several examples (including combined EEG and functional magnetic resonance imaging (fMRI)) and a selective review of the literature. The findings are discussed in terms of short-lasting binding between different brain regions through synchronized oscillations, which could constitute a mechanism to form transient, functional neurocognitive networks.
Resumo:
A publication entitled “A default mode of brain function” initiated a new way of looking at functional imaging data. In this PET study the authors discussed the often-observed consistent decrease of brain activation in a variety of tasks as compared with the baseline. They suggested that this deactivation is due to a task-induced suspension of a default mode of brain function that is active during rest, i.e. that there exists intrinsic well-organized brain activity during rest in several distinct brain regions. This suggestion led to a large number of imaging studies on the resting state of the brain and to the conclusion that the study of this intrinsic activity is crucial for understanding how the brain works. The fact that the brain is active during rest has been well known from a variety of EEG recordings for a very long time. Different states of the brain in the sleep–wake continuum are characterized by typical patterns of spontaneous oscillations in different frequency ranges and in different brain regions. Best studied are the evolving states during the different sleep stages, but characteristic EEG oscillation patterns have also been well described during awake periods (see Chapter 1 for details). A highly recommended comprehensive review on the brain's default state defined by oscillatory electrical brain activities is provided in the recent book by György Buzsaki, showing how these states can be measured by electrophysiological procedures at the global brain level as well as at the local cellular level.
Resumo:
The lipoprotein LppQ is the most prominent antigen of Mycoplasma mycoides subsp. mycoides small colony type (SC) during infection of cattle. This pathogen causes contagious bovine pleuropneumonia (CBPP), a devastating disease of considerable socio-economic importance in many countries worldwide. The dominant antigenicity and high specificity for M. mycoides subsp. mycoides SC of lipoprotein LppQ have been exploited for serological diagnosis and for epidemiological investigations of CBPP. Scanning electron microscopy and immunogold labelling were used to provide ultrastructural evidence that LppQ is located to the cell membrane at the outer surface of M. mycoides subsp. mycoides SC. The selectivity and specificity of this method were demonstrated through discriminating localization of extracellular (i.e., in the zone of contact with host cells) vs. integral membrane domains of LppQ. Thus, our findings support the suggestion that the accessible N-terminal domain of LppQ is surface exposed and such surface localization may be implicated in the pathogenesis of CBPP.
Resumo:
Campylobacter, a major zoonotic pathogen, displays seasonality in poultry and in humans. In order to identify temporal patterns in the prevalence of thermophilic Campylobacter spp. in a voluntary monitoring programme in broiler flocks in Germany and in the reported human incidence, time series methods were used. The data originated between May 2004 and June 2007. By the use of seasonal decomposition, autocorrelation and cross-correlation functions, it could be shown that an annual seasonality is present. However, the peak month differs between sample submission, prevalence in broilers and human incidence. Strikingly, the peak in human campylobacterioses preceded the peak in broiler prevalence in Lower Saxony rather than occurring after it. Significant cross-correlations between monthly temperature and prevalence in broilers as well as between human incidence, monthly temperature, rainfall and wind-force were identified. The results highlight the necessity to quantify the transmission of Campylobacter from broiler to humans and to include climatic factors in order to gain further insight into the epidemiology of this zoonotic disease.
Resumo:
SUMMARY Campylobacteriosis has been the most common food-associated notifiable infectious disease in Switzerland since 1995. Contact with and ingestion of raw or undercooked broilers are considered the dominant risk factors for infection. In this study, we investigated the temporal relationship between the disease incidence in humans and the prevalence of Campylobacter in broilers in Switzerland from 2008 to 2012. We use a time-series approach to describe the pattern of the disease by incorporating seasonal effects and autocorrelation. The analysis shows that prevalence of Campylobacter in broilers, with a 2-week lag, has a significant impact on disease incidence in humans. Therefore Campylobacter cases in humans can be partly explained by contagion through broiler meat. We also found a strong autoregressive effect in human illness, and a significant increase of illness during Christmas and New Year's holidays. In a final analysis, we corrected for the sampling error of prevalence in broilers and the results gave similar conclusions.