20 resultados para Task-based learning

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The assumption that social skills are necessary ingredients of collaborative learning is well established but rarely empirically tested. In addition, most theories on collaborative learning focus on social skills only at the personal level, while the social skill configurations within a learning group might be of equal importance. Using the integrative framework, this study investigates which social skills at the personal level and at the group level are predictive of task-related e-mail communication, satisfaction with performance and perceived quality of collaboration. Data collection took place in a technology-enhanced long-term project-based learning setting for pre-service teachers. For data collection, two questionnaires were used, one at the beginning and one at the end of the learning cycle which lasted 3 months. During the project phase, the e-mail communication between group members was captured as well. The investigation of 60 project groups (N = 155 for the questionnaires; group size: two or three students) and 33 groups for the e-mail communication (N = 83) revealed that personal social skills played only a minor role compared to group level configurations of social skills in predicting satisfaction with performance, perceived quality of collaboration and communication behaviour. Members from groups that showed a high and/or homogeneous configuration of specific social skills (e.g., cooperation/compromising, leadership) usually were more satisfied and saw their group as more efficient than members from groups with a low and/or heterogeneous configuration of skills.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In four experiments we investigated whether incidental task sequence learning occurs when no instructional task cues are available (i.e. with univalent stimuli). We manipulated task sequence by presenting three simple binary-choice tasks (colour, form or letter case decisions) in regular repeated or random order. Participants were required to use the same two response keys for each of the tasks. We manipulated response sequence by ordering the stimuli so as to produce either a regular or a random order of left versus right-hand key presses. When sequencing in both, or either, separate stream (i.e. task sequence and/or response sequence) was changed to random, only those participants who had processed both sequences together showed evidence of sequence learning in terms of significant response time disruption (Experiments 1-3). This effect disappeared when the sequences were uncorrelated (Experiment 4). The results indicate that only the correlated integration of task sequence and response sequence produced a reliable incidental learning effect. As this effect depends on the predictable ordering of stimulus categories, it suggests that task sequence learning is perceptual rather than conceptual in nature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to investigate the role of the fronto–striatal system for implicit task sequence learning. We tested performance of patients with compromised functioning of the fronto–striatal loops, that is, patients with Parkinson's disease and patients with lesions in the ventromedial or dorsolateral prefrontal cortex. We also tested amnesic patients with lesions either to the basal forebrain/orbitofrontal cortex or to thalamic/medio-temporal regions. We used a task sequence learning paradigm involving the presentation of a sequence of categorical binary-choice decision tasks. After several blocks of training, the sequence, hidden in the order of tasks, was replaced by a pseudo-random sequence. Learning (i.e., sensitivity to the ordering) was assessed by measuring whether this change disrupted performance. Although all the patients were able to perform the decision tasks quite easily, those with lesions to the fronto–striatal loops (i.e., patients with Parkinson's disease, with lesions in the ventromedial or dorsolateral prefrontal cortex and those amnesic patients with lesions to the basal forebrain/orbitofrontal cortex) did not show any evidence of implicit task sequence learning. In contrast, those amnesic patients with lesions to thalamic/medio-temporal regions showed intact sequence learning. Together, these results indicate that the integrity of the fronto–striatal system is a prerequisite for implicit task sequence learning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Implicit task sequence learning (TSL) can be considered as an extension of implicit sequence learning which is typically tested with the classical serial reaction time task (SRTT). By design, in the SRTT there is a correlation between the sequence of stimuli to which participants must attend and the sequence of motor movements/key presses with which participants must respond. The TSL paradigm allows to disentangle this correlation and to separately manipulate the presences/absence of a sequence of tasks, a sequence of responses, and even other streams of information such as stimulus locations or stimulus-response mappings. Here I review the state of TSL research which seems to point at the critical role of the presence of correlated streams of information in implicit sequence learning. On a more general level, I propose that beyond correlated streams of information, a simple statistical learning mechanism may also be involved in implicit sequence learning, and that the relative contribution of these two explanations differ according to task requirements. With this differentiation, conflicting results can be integrated into a coherent framework.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Learning by reinforcement is important in shaping animal behavior, and in particular in behavioral decision making. Such decision making is likely to involve the integration of many synaptic events in space and time. However, using a single reinforcement signal to modulate synaptic plasticity, as suggested in classical reinforcement learning algorithms, a twofold problem arises. Different synapses will have contributed differently to the behavioral decision, and even for one and the same synapse, releases at different times may have had different effects. Here we present a plasticity rule which solves this spatio-temporal credit assignment problem in a population of spiking neurons. The learning rule is spike-time dependent and maximizes the expected reward by following its stochastic gradient. Synaptic plasticity is modulated not only by the reward, but also by a population feedback signal. While this additional signal solves the spatial component of the problem, the temporal one is solved by means of synaptic eligibility traces. In contrast to temporal difference (TD) based approaches to reinforcement learning, our rule is explicit with regard to the assumed biophysical mechanisms. Neurotransmitter concentrations determine plasticity and learning occurs fully online. Further, it works even if the task to be learned is non-Markovian, i.e. when reinforcement is not determined by the current state of the system but may also depend on past events. The performance of the model is assessed by studying three non-Markovian tasks. In the first task, the reward is delayed beyond the last action with non-related stimuli and actions appearing in between. The second task involves an action sequence which is itself extended in time and reward is only delivered at the last action, as it is the case in any type of board-game. The third task is the inspection game that has been studied in neuroeconomics, where an inspector tries to prevent a worker from shirking. Applying our algorithm to this game yields a learning behavior which is consistent with behavioral data from humans and monkeys, revealing themselves properties of a mixed Nash equilibrium. The examples show that our neuronal implementation of reward based learning copes with delayed and stochastic reward delivery, and also with the learning of mixed strategies in two-opponent games.