14 resultados para THRESHOLD CURRENT-DENSITY

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

90.00% 90.00%

Publicador:

Resumo:

We report the fabrication and field emission properties of high-density nano-emitter arrays with on-chip electron extraction gate electrodes and up to 106 metallic nanotips that have an apex curvature radius of a few nanometers and a the tip density exceeding 108 cm−2. The gate electrode was fabricated on top of the nano-emitter arrays using a self-aligned polymer mask method. By applying a hot-press step for the polymer planarization, gate–nanotip alignment precision below 10 nm was achieved. Fabricated devices exhibited stable field electron emission with a current density of 0.1 A cm−2, indicating that these are promising for applications that require a miniature high-brightness electron source.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report the case of a woman with syncope and persistently prolonged QTc interval. Screening of congenital long QT syndrome (LQTS) genes revealed that she was a heterozygous carrier of a novel KCNH2 mutation, c.G238C. Electrophysiological and biochemical characterizations unveiled the pathogenicity of this new mutation, displaying a 2-fold reduction in protein expression and current density due to a maturation/trafficking-deficient mechanism. The patient's phenotype can be fully explained by this observation. This study illustrates the importance of performing genetic analyses and mutation characterization when there is a suspicion of congenital LQTS. Identifying mutations in the PAS domain or other domains of the hERG1 channel and understanding their effect may provide more focused and mutation-specific risk assessment in this population.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cationic and anionic electrophoretic mobilization for focusing of hemoglobins (Hb's) in the presence of 100 carrier ampholytes covering a pI range of 6.00-7.98 was studied by computer simulation at a constant current density of 300 A/m(2). Electropherograms that would be produced by whole column imaging and by single detectors placed at different locations along the focusing column are presented. Upon mobilization, peak heights of the Hb zones decrease, but the zones retain a relatively sharp constant profile and are migrating at a constant velocity. A further peak decrease occurs during readjustment at the locations of the original buffer/column interfaces, indicating that detection sensitivity is the lowest at these locations. An anionic carrier ampholyte mobility smaller than that of its cationic species produces a cathodic drift which is smaller than the transport rate used for electrophoretic mobilization. Compared to the case with equal mobilities of carrier ampholyte species, a small increase (decrease) is predicted for the cationic (anionic) mobilization rate within the focusing column. Simulation data suggest that electrophoretic mobilization after focusing and focusing with concurrent electrophoretic mobilization are comparable isotachophoretic processes that occur when there is an uninterrupted flux of an ion through the focusing column. Cathodic drift caused by unequal mobilities of the species of carrier ampholytes, electrophoretic mobilization, and decomposition occurring at the pH gradient edges are related electrophoretic processes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mirror masked words are embedded into a context that makes them appear as senseless patterns or as strings of unfamiliar letters. Thus, mirror masked words can be shown for several hundreds of milliseconds without being recognised as words. We sought to further investigate effects of nonsconscious reading by monitoring event-related brain potentials (ERPs) while participants observed mirror masked letter strings. ERPs were recorded while participants observed mirror masked words and nonwords. Data of 15 participants was segmented into periods of quasi-stable field topography (microstates). Microstates for masked words and nonwords were compared using randomization tests, statistical parametric scalp maps and Low Resolution Electromagnetic Tomography (LORETA). ERPs to masked words and nonwords showed significant topographic differences between 136 and 256 ms, indicating that stimuli were nonconsciously discriminated. A LORETA model localised sources of activation discriminating between masked words and nonwords in left operculum, the right superior parietal lobe and right superior temporal gyrus indicating higher current density for nonwords than for words in these areas. ERPs of mirror masked stimuli can indicate unconscious discrimination even in cases where behavioural priming is unreliable. This approach might be useful for investigating differences in early, nonconscious stages of word perception.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Functional imaging of brain electrical activity was performed in nine acute, neuroleptic-naive, first-episode, productive patients with schizophrenia and 36 control subjects. Low-resolution electromagnetic tomography (LORETA, three-dimensional images of cortical current density) was computed from 19-channel of electroencephalographic (EEG) activity obtained under resting conditions, separately for the different EEG frequencies. Three patterns of activity were evident in the patients: (1) an anterior, near-bilateral excess of delta frequency activity; (2) an anterior-inferior deficit of theta frequency activity coupled with an anterior-inferior left-sided deficit of alpha-1 and alpha-2 frequency activity; and (3) a posterior-superior right-sided excess of beta-1, beta-2 and beta-3 frequency activity. Patients showed deviations from normal brain activity as evidenced by LORETA along an anterior-left-to-posterior-right spatial axis. The high temporal resolution of EEG makes it possible to specify the deviations not only as excess or deficit, but also as inhibitory, normal and excitatory. The patients showed a dis-coordinated brain functional state consisting of inhibited prefrontal/frontal areas and simultaneously overexcited right parietal areas, while left anterior, left temporal and left central areas lacked normal routine activity. Since all information processing is brain-state dependent, this dis-coordinated state must result in inadequate treatment of (externally or internally generated) information.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objectives: Although behavioral studies have demonstrated that normative affective traits modulate the processing of facial and emotionally charged stimuli, direct electrophysiological evidence for this modulation is still lacking. Methods: Event-related potential (ERP) data associated with personal, traitlike approach- or withdrawal-related attitude (assessed post-recording and 14 months later) were investigated in 18 subjects during task-free (i.e. unrequested, spontaneous) emotional evaluation of faces. Temporal and spatial aspects of 27 channel ERP were analyzed with microstate analysis and low resolution electromagnetic tomography (LORETA), a new method to compute 3 dimensional cortical current density implemented in the Talairach brain atlas. Results: Microstate analysis showed group differences 132-196 and 196-272 ms poststimulus, with right-shifted electric gravity centers for subjects with negative affective attitude. During these (over subjects reliably identifiable) personality-modulated, face-elicited microstates, LORETA revealed activation of bilateral occipito-temporal regions, reportedly associated with facial configuration extraction processes. Negative compared to positive affective attitude showed higher activity right temporal; positive compared to negative attitude showed higher activity left temporo-parieto-occipital. Conclusions: These temporal and spatial aspects suggest that the subject groups differed in brain activity at early, automatic, stimulus-related face processing steps when structural face encoding (configuration extraction) occurs. In sum, the brain functional microstates associated with affect-related personality features modulate brain mechanisms during face processing already at early information processing stages.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

OBJECTIVES Individual mutations in the SCN5A-encoding cardiac sodium channel alpha-subunit cause single cardiac arrhythmia disorders, but a few cause multiple distinct disorders. Here we report a family harboring an SCN5A mutation (L1821fs/10) causing a truncation of the C-terminus with a marked and complex biophysical phenotype and a corresponding variable and complex clinical phenotype with variable penetrance. METHODS AND RESULTS A 12-year-old male with congenital sick sinus syndrome (SSS), cardiac conduction disorder (CCD), and recurrent monomorphic ventricular tachycardia (VT) had mutational analysis that identified a 4 base pair deletion (TCTG) at position 5464-5467 in exon 28 of SCN5A. The mutation was also present in six asymptomatic family members only two of which showed mild ECG phenotypes. The deletion caused a frame-shift mutation (L1821fs/10) with truncation of the C-terminus after 10 missense amino acid substitutions. When expressed in HEK-293 cells for patch-clamp study, the current density of L1821fs/10 was reduced by 90% compared with WT. In addition, gating kinetic analysis showed a 5-mV positive shift in activation, a 12-mV negative shift of inactivation and enhanced intermediate inactivation, all of which would tend to reduce peak and early sodium current. Late sodium current, however, was increased in the mutated channels. CONCLUSIONS The L1821fs/10 mutation causes the most severe disruption of SCN5A structure for a naturally occurring mutation that still produces current. It has a marked loss-of-function and unique phenotype of SSS, CCD and VT with incomplete penetrance.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Planar electrodes are increasingly used in therapeutic neural stimulation techniques such as functional electrical stimulation, epidural spinal cord stimulation (ESCS), and cortical stimulation. Recently, optimized electrode geometries have been shown to increase the efficiency of neural stimulation by increasing the variation of current density on the electrode surface. In the present work, a new family of modified fractal electrode geometries is developed to enhance the efficiency of neural stimulation. It is shown that a promising approach in increasing the neural activation function is to increase the "edginess" of the electrode surface, a concept that is explained and quantified by fractal mathematics. Rigorous finite element simulations were performed to compute electric potential produced by proposed modified fractal geometries. The activation of 256 model axons positioned around the electrodes was then quantified, showing that modified fractal geometries required a 22% less input power while maintaining the same level of neural activation. Preliminary in vivo experiments investigating muscle evoked potentials due to median nerve stimulation showed encouraging results, supporting the feasibility of increasing neural stimulation efficiency using modified fractal geometries.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Foreign mRNA was expressed in Xenopus laevis oocytes. Newly expressed ion currents localized in defined plasma membrane areas were measured using the two-electrode voltage clamp technique in combination with a specially designed chamber, that exposed only part of the surface on the oocytes to channel agonists or inhibitors. Newly expressed currents were found to be unequally distributed in the surface membrane of the oocyte. This asymmetry was most pronounced during the early phase of expression, when channels could almost exclusively be detected in the animal hemisphere of the oocyte. 4 d after injection of the mRNA, or later, channels could be found at a threefold higher density at the animal than at the vegetal pole area. The pattern of distribution was observed to be similar with various ion channels expressed from crude tissue mRNA and from cRNAs coding for rat GABAA receptor channel subunits. Electron microscopical analysis revealed very similar microvilli patterns at both oocyte pole areas. Thus, the asymmetric current distribution is not due to asymmetric surface structure. Upon incubation during the expression period in either colchicine or cytochalasin D, the current density was found to be equal in both pole areas. The inactive control substance beta-lumicolchicine had no effect on the asymmetry of distribution. Colchicine was without effect on the amplitude of the expressed whole cell current. Our measurements reveal a pathway for plasma membrane protein expression endogenous to the Xenopus oocyte, that may contribute to the formation and maintenance of polarity of this highly organized cell.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The transient receptor potential channel, TRPM4, and its closest homolog, TRPM5, are non-selective cation channels that are activated by an increase in intracellular calcium. They are expressed in many cell types, including neurons and myocytes. Although the electrophysiological and pharmacological properties of these two channels have been previously studied, less is known about their regulation, in particular their post-translational modifications. We, and others, have reported that wild-type (WT) TRPM4 channels expressed in HEK293 cells, migrated on SDS-PAGE gel as doublets, similar to other ion channels and membrane proteins. In the present study, we provide evidence that TRPM4 and TRPM5 are each N-linked glycosylated at a unique residue, Asn(992) and Asn(932), respectively. N-linked glycosylated TRPM4 is also found in native cardiac cells. Biochemical experiments using HEK293 cells over-expressing WT TRPM4/5 or N992Q/N932Q mutants demonstrated that the abolishment of N-linked glycosylation did not alter the number of channels at the plasma membrane. In parallel, electrophysiological experiments demonstrated a decrease in the current density of both mutant channels, as compared to their respective controls, either due to the Asn to Gln mutations themselves or abolition of glycosylation. To discriminate between these possibilities, HEK293 cells expressing TRPM4 WT were treated with tunicamycin, an inhibitor of glycosylation. In contrast to N-glycosylation signal abolishment by mutagenesis, tunicamycin treatment led to an increase in the TRPM4-mediated current. Altogether, these results demonstrate that TRPM4 and TRPM5 are both N-linked glycosylated at a unique site and also suggest that TRPM4/5 glycosylation seems not to be involved in channel trafficking, but mainly in their functional regulation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We used electrochemical scanning tunneling microscopy to study the intercalation of hydrogen into a Cu(111) model electrode under reactive (in operando) conditions. Hydrogen evolution causes hydrogen intermediates to migrate into the copper lattice as function of the applied potential and the resulting current density. This H-inclusion is demonstrated to be reversible. The presence of subsurface hydrogen leads to a significant surface relaxation/reconstruction affecting both the geometric and electronic structure of the electrode surface.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Here we report the first study on the electrochemical energy storage application of a surface-immobilized ruthenium complex multilayer thin film with anion storage capability. We employed a novel dinuclear ruthenium complex with tetrapodal anchoring groups to build well-ordered redox-active multilayer coatings on an indium tin oxide (ITO) surface using a layer-by-layer self-assembly process. Cyclic voltammetry (CV), UV-Visible (UV-Vis) and Raman spectroscopy showed a linear increase of peak current, absorbance and Raman intensities, respectively with the number of layers. These results indicate the formation of well-ordered multilayers of the ruthenium complex on ITO, which is further supported by the X-ray photoelectron spectroscopy analysis. The thickness of the layers can be controlled with nanometer precision. In particular, the thickest layer studied (65 molecular layers and approx. 120 nm thick) demonstrated fast electrochemical oxidation/reduction, indicating a very low attenuation of the charge transfer within the multilayer. In situ-UV-Vis and resonance Raman spectroscopy results demonstrated the reversible electrochromic/redox behavior of the ruthenium complex multilayered films on ITO with respect to the electrode potential, which is an ideal prerequisite for e.g. smart electrochemical energy storage applications. Galvanostatic charge–discharge experiments demonstrated a pseudocapacitor behavior of the multilayer film with a good specific capacitance of 92.2 F g−1 at a current density of 10 μA cm−2 and an excellent cycling stability. As demonstrated in our prototypical experiments, the fine control of physicochemical properties at nanometer scale, relatively good stability of layers under ambient conditions makes the multilayer coatings of this type an excellent material for e.g. electrochemical energy storage, as interlayers in inverted bulk heterojunction solar cell applications and as functional components in molecular electronics applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The electrochemical reduction of CO2 has been extensively studied over the past decades. Nevertheless, this topic has been tackled so far only by using a very fundamental approach and mostly by trying to improve kinetics and selectivities toward specific products in half-cell configurations and liquid-based electrolytes. The main drawback of this approach is that, due to the low solubility of CO2 in water, the maximum CO2 reduction current which could be drawn falls in the range of 0.01–0.02 A cm–2. This is at least an order of magnitude lower current density than the requirement to make CO2-electrolysis a technically and economically feasible option for transformation of CO2 into chemical feedstock or fuel thereby closing the CO2 cycle. This work attempts to give a short overview on the status of electrochemical CO2 reduction with respect to challenges at the electrolysis cell as well as at the catalyst level. We will critically discuss possible pathways to increase both operating current density and conversion efficiency in order to close the gap with established energy conversion technologies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this study, the correlation between the impregnation of proton exchange membrane fuel cell catalysts with perfluorosulfonate-ionomer (PFSI) and its electrochemical and electrocatalytic properties is investigated for different Pt loadings and carbon supports using a rotating-disk electrode (RDE) setup. We concentrate on its influence on the electrochemical surface area (ECSA) and the oxygen reduction reaction (ORR) activity. For this purpose, platinum (Pt) nanoparticles are prepared via a colloidal based preparation route and supported on three different carbon supports. Based on RDE experiments, we show that the ionomer has an influence both on the Pt utilization and the apparent kinetic current density of ORR. The experimental data reveal a strong interaction in the microstructure between the electrochemical properties and the surface properties of the carbon supports, metal loading and ionomer content. This study demonstrates that the colloidal synthesis approach offers interesting potential for systematic studies for the optimization of fuel cell catalysts.