10 resultados para Symbiosis.
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The Burgundy truffle (Tuber aestivum Vittad.), an ectomycorrhizal fungus living in association with host plants, is one of the most exclusive delicacies. The symbiosis with deciduous oak, beech, and hazel dominates our concept of truffle ecophysiology, whereas potential conifer hosts have rarely been reported. Here, we present morphological and molecular evidence of a wildlife T. aestivum symbiosis with Norway spruce (Picea abies Karst.) and an independent greenhouse inoculation experiment, to confirm our field observation in southwest Germany. A total of 27 out of 50 P. abies seedlings developed T. aestivum ectomycorrhizae with a mean mycorrhization rate of 19.6 %. These findings not only suggest P. abies to be a productive host species under suitable biogeographic conditions but also emphasize the broad ecological amplitude and great symbiotic range of T. aestivum. While challenging common knowledge, this study demonstrates a significant expansion of the species' cultivation potential to the central European regions, where P. abies forests occur on calcareous soils.
Resumo:
Phosphorus and nitrogen are essential nutrient elements that are needed by plants in large amounts. The arbuscular mycorrhizal symbiosis between plants and soil fungi improves phosphorus and nitrogen acquisition under limiting conditions. On the other hand, these nutrients influence root colonization by mycorrhizal fungi and symbiotic functioning. This represents a feedback mechanism that allows plants to control the fungal symbiont depending on nutrient requirements and supply. Elevated phosphorus supply has previously been shown to exert strong inhibition of arbuscular mycorrhizal development. Here, we address to what extent inhibition by phosphorus is influenced by other nutritional pathways in the interaction between Petunia hybrida and R. irregularis. We show that phosphorus and nitrogen are the major nutritional determinants of the interaction. Interestingly, the symbiosis-promoting effect of nitrogen starvation dominantly overruled the suppressive effect of high phosphorus nutrition onto arbuscular mycorrhiza, suggesting that plants promote the symbiosis as long as they are limited by one of the two major nutrients. Our results also show that in a given pair of symbiotic partners (Petunia hybrida and R. irregularis), the entire range from mutually symbiotic to parasitic can be observed depending on the nutritional conditions. Taken together, these results reveal complex nutritional feedback mechanisms in the control of root colonization by arbuscular mycorrhizal fungi.
Resumo:
Intestinal immunoglobulin A (IgA) ensures host defense and symbiosis with our commensal microbiota. Yet previous studies hint at a surprisingly low diversity of intestinal IgA, and it is unknown to what extent the diverse Ig arsenal generated by somatic recombination and diversification is actually used. In this study, we analyze more than one million mouse IgA sequences to describe the shaping of the intestinal IgA repertoire, its determinants, and stability over time. We show that expanded and infrequent clones combine to form highly diverse polyclonal IgA repertoires with very little overlap between individual mice. Selective homing allows expanded clones to evenly seed the small but not large intestine. Repertoire diversity increases during aging in a dual process. On the one hand, microbiota-, T cell-, and transcription factor RORγt-dependent but Peyer's patch-independent somatic mutations drive the diversification of expanded clones, and on the other hand, new clones are introduced into the repertoire of aged mice. An individual's IgA repertoire is stable and recalled after plasma cell depletion, which is indicative of functional memory. These data provide a conceptual framework to understand the dynamic changes in the IgA repertoires to match environmental and intrinsic stimuli.
Resumo:
Healthy individuals live in peaceful co-existence with an immense load of intestinal bacteria. This symbiosis is advantageous for both the host and the bacteria. For the host it provides access to otherwise undigestible nutrients and colonization resistance against pathogens. In return the bacteria receive an excellent nutrient habitat. The mucosal immune adaptations to the presence of this commensal intestinal microflora are manifold. Although bacterial colonization has clear systemic consequences, such as maturation of the immune system, it is striking that the mutualistic adaptive (T and B cells) and innate immune responses are precisely compartmentalized to the mucosal immune system. Here we summarize the mechanisms of mucosal immune compartmentalization and its importance for a healthy host-microbiota mutualism.
Resumo:
Stereological tools are the gold standard for accurate (i.e., unbiased) and precise quantification of any microscopic sample. The past decades have provided a broad spectrum of tools to estimate a variety of parameters such as volumes, surfaces, lengths, and numbers. Some of them require pairs of parallel sections that can be produced by either physical or optical sectioning, with optical sectioning being much more efficient when applicable. Unfortunately, transmission electron microscopy could not fully profit from these riches, mainly because of the large depth of field. Hence, optical sectioning was a long-time desire for electron microscopists. This desire was fulfilled with the development of electron tomography that yield stacks of slices from electron microscopic sections. Now, parallel optical slices of a previously unimagined small thickness (2-5 nm axial resolution) can be produced. These optical slices minimize problems related to overprojection effects, and allow for direct stereological analysis, e.g., volume estimation with the Cavalieri principle and number estimation with the optical disector method. Here, we demonstrate that the symbiosis of stereology and electron tomography is an easy and efficient way for quantitative analysis at the electron microscopic level. We call this approach quantitative 3D electron microscopy.
Resumo:
Stereological tools are the gold standard for accurate (i.e., unbiased) and precise quantification of any microscopic sample. The past decades have provided a broad spectrum of tools to estimate a variety of parameters such as volumes, surfaces, lengths, and numbers. Some of them require pairs of parallel sections that can be produced by either physical or optical sectioning, with optical sectioning being much more efficient when applicable. Unfortunately, transmission electron microscopy could not fully profit from these riches, mainly because of the large depth of field. Hence, optical sectioning was a long-time desire for electron microscopists. This desire was fulfilled with the development of electron tomography that yield stacks of slices from electron microscopic sections. Now, parallel optical slices of a previously unimagined small thickness (2-5nm axial resolution) can be produced. These optical slices minimize problems related to overprojection effects, and allow for direct stereological analysis, e.g., volume estimation with the Cavalieri principle and number estimation with the optical disector method. Here, we demonstrate that the symbiosis of stereology and electron tomography is an easy and efficient way for quantitative analysis at the electron microscopic level. We call this approach quantitative 3D electron microscopy.
Resumo:
1. Plants interact with many organisms, such as microbes and herbivores, and these interactions are likely to affect the establishment and spread of plants. In the context of plant invasions, mycorrhizal fungi and constitutive and induced resistance of plants against herbivores have received attention independently of each other. However, plants are frequently involved in complex multi-trophic interactions, which might differ between invasive and non-invasive alien plants. 2. In a multi-species comparative experiment, we aimed to improve our understanding of plant traits associated with invasiveness. We tested whether eight invasive alien plant species use the mycorrhizal symbiosis in a more beneficial way, and have higher levels of constitutive or induced resistance against two generalist bioassay herbivores, than nine non-invasive alien species. We further assessed whether the presence of mycorrhizal fungi altered the resistance of the plant species, and whether this differed between invasive and non-invasive alien species. 3. While invasive species produced more biomass, they did not differ in their biomass response to mycorrhizal fungi from non-invasive alien species. Invasive species also did not have higher levels of constitutive or induced resistance against the two generalist herbivores. Mycorrhizal fungi greatly affected the resistance of our plant species, however, this was also unrelated to whether the alien species were invasive or not. 4. Our study confirms the previous findings that invasive species generally grow faster and produce more biomass than non-invasive alien species. We further show that alien plant species used a variety of defence strategies, and also varied in their interactions with mycorrhizal fungi. These multi-trophic interactions were not consistently related to invasiveness of the alien plant species. 5. We suggest that awareness of the fact that alien plant species are involved in multi-trophic interactions might lead to a more complete understanding of the factors contributing to a plant's success.
Resumo:
Burgundy truffles (Tuber aestivum syn. Tuber uncinatum) are the highly prized fruit bodies of subterranean fungi always occurring in ectomycorrhizal symbiosis with host plants. Successful cultivation can be achieved through artificial mycorrhization and outplanting of mostly oaks and hazel on suitable terrain. Here, we review ecological requirements, the influence of environmental factors, and the importance of molecular techniques for a successful cultivation of T. aestivum across Europe. The historical background and current knowledge of T. aestivum cultivation are discussed in light of its socioeconomic relevance.
Resumo:
Petunia hybrida is a popular bedding plant that has a long history as a genetic model system. We report the whole-genome sequencing and assembly of inbred derivatives of its two wild parents, P. axillaris N and P. inflata S6. The assemblies include 91.3% and 90.2% coverage of their diploid genomes (1.4 Gb; 2n = 14) containing 32,928 and 36,697 protein-coding genes, respectively. The genomes reveal that the Petunia lineage has experienced at least two rounds of hexaploidization: the older gamma event, which is shared with most Eudicots, and a more recent Solanaceae event that is shared with tomato and other solanaceous species. Transcription factors involved in the shift from bee to moth pollination reside in particularly dynamic regions of the genome, which may have been key to the remarkable diversity of floral colour patterns and pollination systems. The high-quality genome sequences will enhance the value of Petunia as a model system for research on unique biological phenomena such as small RNAs, symbiosis, self-incompatibility and circadian rhythms.