4 resultados para Sumo de maça
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
In an mRNA profiling screen performed to unveil novel mechanisms of leukemogenesis, we found that the sentrin-specific protease 5 (SENP5) was significantly repressed in clinical acute myeloid leukemia when compared to healthy neutrophil samples. SENP5 is an enzyme that targets and cleaves small ubiquitin-like modifier (SUMO) residues from SUMOylated proteins. Further investigation with AML neutrophil differentiation cell models showed increased SENP5 expression upon induction of differentiation; in contrast, knocking down SENP5 resulted in significantly attenuated neutrophil differentiation. Our results support a new role of SENP5 in AML pathology, and in particular in the neutrophil differentiation of myeloid leukemic cells.
Resumo:
FUS/TLS (fused in sarcoma/translocated in liposarcoma) is a ubiquitously expressed RNA-binding protein, that has been discovered as fused to transcription factors in several human sarcomas and found in protein aggregates in neurons of patients with an inherited form of Amyotrophic Lateral Sclerosis [1]. To date, FUS has been implicated in a variety of cellular processes such as gene expression control, transcriptional regulation, pre-mRNA splicing and miRNA processing [2]. In addition, some evidences link FUS to genome stability control and DNA damage response. In fact, mice lacking FUS are hypersensitive to ionizing radiation and show high levels of chromosome instability and in response to double-strand breaks, FUS gets phosphorylated by the protein kinase ATM [3, 4, 5]. Moreover, upon DNA damage stress, FUS mediates Ebp1 (ErbB3 receptor-binding protein) SUMOylation, a post-translational modification that is required for its onco-suppressive activity, by acting as SUMO E3 ligase [6]. The study aims to investigate the role of FUS in DNA damage response and SUMOylation, two cellular pathways tightly interconnected to each other. Moreover, we will exploit biochemical and mass spectrometry-based approaches in order to identify other potential substrates of the E3 SUMO ligase activity of FUS. Preliminary results of mass spectrometric identification of FUS interacting proteins, in HEK293 and SHSY5Y cells, highlighted the interaction of FUS with several proteins involved in DNA damage response and many of those have been described already as target of SUMOylation, such as XRCC5, DDX5, PARP1, Nucleophosmin, and others. These evidences strengthen the hypothesis that FUS might represent a link between these pathways, even thou its exact role still needs to be clearly addressed. [1] Vance C. et al. (2009) Science 323(5918): p. 1208-11 [2] Fiesel FC., Kahle PJ. (2011) FEBS J. 278(19): p. 3550-68 [3] Kuroda M. et al. (2000) Embo J. 19(3): p. 453-62 [4] Hicks GG. et al. (2000) Nat Genet. 24(2):p. 175-9 [5] Gardiner M. et al. (2008) Biochem J. 415(2): p. 297-307 [6] Oh SM. et al. (2010) Oncogene 29(7): p. 1017-30
Resumo:
Mycobacterium avium subsp. avium (Maa) is an intracellular pathogen belonging to the Mycobacterium avium-intracellulare complex (MAC). Reservoirs of MAC are the natural environment, wildlife and domestic animals. In adult bovine, MAC infections are typically caused by Mycobacterium avium subsp. paratuberculosis (Map). Maa infections in bovine are rarely reported but may cause clinical disease and pathological lesions similar to those observed in paratuberculosis or those induced by members of the Mycobacterium tuberculosis complex (MTBC). Therefore, differentiation of MAC from MTBC infection should be attempted, especially if unusual mycobacterial lesions are encountered. Four veal calves from a fattening farm dying with clinical signs of otitis media, fever, and weight loss were submitted for necropsy. Samples from affected organs were taken for histologic investigation, bacteriologic culture, and bacterial specification using PCR. Macroscopic thickening of the intestinal mucosa was induced by granulomatous enteritis and colitis. Intracytoplasmic acid-fast bacteria were detected by Ziehl-Neelsen stains and PCR revealed positive results for Mycobacterium avium subsp. avium. Clinical and pathological changes of Maa infection in veal calves had features of Mycobacterium avium subsp. paratuberculosis and the MTBC. Therefore, Mycobacterium tuberculosis complex infection should be considered in cases of granulomatous enteritis in calves.