18 resultados para Structure Modeling

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nitration of tyrosine residues has been observed during various acute and chronic inflammatory diseases. However, the mechanism of tyrosine nitration and the nature of the proteins that become tyrosine nitrated during inflammation remain unclear. Here we show that eosinophils but not other cell types including neutrophils contain nitrotyrosine-positive proteins in specific granules. Furthermore, we demonstrate that the human eosinophil toxins, eosinophil peroxidase (EPO), major basic protein, eosinophil-derived neurotoxin (EDN) and eosinophil cationic protein (ECP), and the respective murine toxins, are post-translationally modified by nitration at tyrosine residues during cell maturation. High resolution affinity-mass spectrometry identified specific single nitration sites at Tyr349 in EPO and Tyr33 in both ECP and EDN. ECP and EDN crystal structures revealed and EPO structure modeling suggested that the nitrated tyrosine residues in the toxins are surface exposed. Studies in EPO(-/-), gp91phox(-/-), and NOS(-/-) mice revealed that tyrosine nitration of these toxins is mediated by EPO in the presence of hydrogen peroxide and minute amounts of NOx. Tyrosine nitration of eosinophil granule toxins occurs during maturation of eosinophils, independent of inflammation. These results provide evidence that post-translational tyrosine nitration is unique to eosinophils.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

P450 oxidoreductase (POR) is the obligate electron donor for microsomal cytochrome P450s and mutations in POR cause several metabolic disorders. We have modeled the structure of human P450 oxidoreductase by in silico amino acid replacements in the rat POR crystal structure. The rat POR has 94% homology with human POR and 38 amino acids were replaced to make its sequence identical to human POR. Several rounds of molecular dynamic simulations refined the model and removed structural clashes from side chain alterations of replaced amino acids. This approach has the advantage of keeping the cofactor contacts and structural features of the core enzyme intact which could not be achieved by homology based approaches. The final model from our approach was of high quality and compared well with experimentally determined structures of other PORs. This model will be used for analyzing the structural implications of mutations and polymorphisms in human POR.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent advances have revealed that during exogenous airway challenge, airway diameters can not be adequately predicted by their initial diameters. Furthermore, airway diameters can also vary greatly in time on scales shorter than a breath. In order to better understand these phenomena, we developed a multiscale model which allows us to simulate aerosol challenge in the airways during ventilation. The model incorporates agonist-receptor binding kinetics to govern the temporal response of airway smooth muscle (ASM) contraction on individual airway segments, which together with airway wall mechanics, determines local airway caliber. Global agonist transport and deposition is coupled with pressure-driven flow, linking local airway constrictions with global flow dynamics. During the course of challenge, airway constriction alters the flow pattern, redistributing agonist to less constricted regions. This results in a negative feedback which may be a protective property of the normal lung. As a consequence, repetitive challenge can cause spatial constriction patterns to evolve in time, resulting in a loss of predictability of airway diameters. Additionally, the model offers new insight into several phenomena including the intra- and inter-breath dynamics of airway constriction throughout the tree structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The optical properties of a match-like plasmonic nanostructure are numerically investigated using full-wave finite-difference time-domain analysis in conjunction with dispersive material models. This work is mainly motivated by the developed technique enabling reproducible fabrication of nanomatch structures as well as the growing applications that utilize the localized field enhancement in plasmonic nanostructures. Our research revealed that due to the pronounced field enhancement and larger resonance tunabilities, some nanomatch topologies show potentials for various applications in the field of, e.g., sensing as well as a novel scheme for highly reproducible tips in scanning near field optical microscopy, among others. Despite the additional degrees of freedom that are offered by the composite nature of the proposed nanomatch topology, the paper also reflects on a fundamental complication intrinsic to the material interfaces especially in the nanoscale: stoichiometric mixing. We conclude that the specificity in material modeling will become a significant issue in future research on functionalized composite nanostructures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three dimensional, time dependent numerical simulations of healthy and pathological conditions in a model kidney were performed. Blood flow in a kidney is not commonly investigated by computational approach, in contrast for example, to the flow in a heart. The flow in a kidney is characterized by relatively small Reynolds number (100 < Re < 0.01-laminar regime). The presented results give insight into the structure of such flow, which is hard to measure in vivo. The simulations have suggested that venous thrombosis is more likely than arterial thrombosis-higher shear rate observed. The obtained maximum velocity, as a result of the simulations, agrees with the observed in vivo measurements. The time dependent simulations show separation regimes present in the vicinity of the maximum pressure value. The pathological constriction introduced to the arterial geometry leads to the changes in separation structures. The constriction of a single vessel affects flow in the whole kidney. Pathology results in different flow rate values in healthy and affected branches, as well as, different pulsate cycle characteristic for the whole system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The first step of coagulation factor XIII (FXIII) activation involves cleavage of the FXIII activation peptide (FXIII-AP) by thrombin. However, it is not known whether the FXIII-AP is released into plasma upon cleavage or remains attached to activated FXIII. The aim of the present work was to study the structure of free FXIII-AP, develop an assay for FXIII-AP determination in human plasma, and to answer the question whether FXIII-AP is released into plasma. We used ab-initio modeling and molecular dynamics simulations to study the structure of free FXIII-AP. We raised monoclonal and polyclonal antibodies against FXIII-AP and developed a highly sensitive and specific ELISA method for direct detection of FXIII-AP in human plasma. Structural analysis showed a putative different conformation of the free FXIII-AP compared to FXIII-AP bound to the FXIII protein. We concluded that it might be feasible to develop specific antibodies against the free FXIII-AP. Using our new FXIII-AP ELISA, we found high levels of FXIII-AP in in-vitro activated plasma samples and serum. We showed for the first time that FXIIIAP is detached from activated FXIII and is released into plasma, where it can be directly measured. Our findings may be of major clinical interest in regard to a possible new marker in thrombotic disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Correspondence establishment is a key step in statistical shape model building. There are several automated methods for solving this problem in 3D, but they usually can only handle objects with simple topology, like that of a sphere or a disc. We propose an extension to correspondence establishment over a population based on the optimization of the minimal description length function, allowing considering objects with arbitrary topology. Instead of using a fixed structure of kernel placement on a sphere for the systematic manipulation of point landmark positions, we rely on an adaptive, hierarchical organization of surface patches. This hierarchy can be built on surfaces of arbitrary topology and the resulting patches are used as a basis for a consistent, multi-scale modification of the surfaces' parameterization, based on point distribution models. The feasibility of the approach is demonstrated on synthetic models with different topologies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ability of anesthetic agents to provide adequate analgesia and sedation is limited by the ventilatory depression associated with overdosing in spontaneously breathing patients. Therefore, quantitation of drug induced ventilatory depression is a pharmacokinetic-pharmacodynamic problem relevant to the practice of anesthesia. Although several studies describe the effect of respiratory depressant drugs on isolated endpoints, an integrated description of drug induced respiratory depression with parameters identifiable from clinically available data is not available. This study proposes a physiological model of CO2 disposition, ventilatory regulation, and the effects of anesthetic agents on the control of breathing. The predictive performance of the model is evaluated through simulations aimed at reproducing experimental observations of drug induced hypercarbia and hypoventilation associated with intravenous administration of a fast-onset, highly potent anesthetic mu agonist (including previously unpublished experimental data determined after administration of 1 mg alfentanil bolus). The proposed model structure has substantial descriptive capability and can provide clinically relevant predictions of respiratory inhibition in the non-steady-state to enhance safety of drug delivery in the anesthetic practice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aggretin is a C-type lectin purified from Calloselasma rhodostoma snake venom. It is a potent activator of platelets, resulting in a collagen-like response by binding and clustering platelet receptor CLEC-2. We present here the crystal structure of aggretin at 1.7 A which reveals a unique tetrameric quaternary structure. The two alphabeta heterodimers are arranged through 2-fold rotational symmetry, resulting in an antiparallel side-by-side arrangement. Aggretin thus presents two ligand binding sites on one surface and can therefore cluster ligands in a manner reminiscent of convulxin and flavocetin. To examine the molecular basis of the interaction with CLEC-2, we used a molecular modeling approach of docking the aggretin alphabeta structure with the CLEC-2 N-terminal domain (CLEC-2N). This model positions the CLEC-2N structure face down in the "saddle"-shaped binding site which lies between the aggretin alpha and beta lectin-like domains. A 2-fold rotation of this complex to generate the aggretin tetramer reveals dimer contacts for CLEC-2N which bring the N- and C-termini into the proximity of each other, and a series of contacts involving two interlocking beta-strands close to the N-terminus are described. A comparison with homologous lectin-like domains from the immunoreceptor family reveals a similar but not identical dimerization mode, suggesting this structure may represent the clustered form of CLEC-2 capable of signaling across the platelet membrane.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The spectacular images of Comet 103P/Hartley 2 recorded by the Medium Resolution Instrument (MRI) and High Resolution Instrument (HRI) on board of the Extrasolar Planet Observation and Deep Impact Extended Investigation (EPOXI) spacecraft, as the Deep Impact extended mission, revealed that its bi-lobed very active nucleus outgasses volatiles heterogeneously. Indeed, CO2 is the primary driver of activity by dragging out chunks of pure ice out of the nucleus from the sub-solar lobe that appear to be the main source of water in Hartley 2's coma by sublimating slowly as they go away from the nucleus. However, water vapor is released by direct sublimation of the nucleus at the waist without any significant amount of either CO2 or icy grains. The coma structure for a comet with such areas of diverse chemistry differs from the usual models where gases are produced in a homogeneous way from the surface. We use the fully kinetic Direct Simulation Monte Carlo model of Tenishev et al. (Tenishev, V.M., Combi, M.R., Davidsson, B. [2008]. Astrophys. J. 685, 659-677; Tenishev, V.M., Combi, M.R., Rubin, M. [2011]. Astrophys. J. 732, 104-120) applied to Comet 103P/Hartley 2 including sublimating icy grains to reproduce the observations made by EPOXI and ground-based measurements. A realistic bi-lobed nucleus with a succession of active areas with different chemistry was included in the model enabling us to study in details the coma of Hartley 2. The different gas production rates from each area were found by fitting the spectra computed using a line-by-line non-LTE radiative transfer model to the HRI observations. The presence of icy grains with long lifetimes, which are pushed anti-sunward by radiation pressure, explains the observed OH asymmetry with enhancement on the night side of the coma.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to analyze software systems, it is necessary to model them. Static software models are commonly imported by parsing source code and related data. Unfortunately, building custom parsers for most programming languages is a non-trivial endeavour. This poses a major bottleneck for analyzing software systems programmed in languages for which importers do not already exist. Luckily, initial software models do not require detailed parsers, so it is possible to start analysis with a coarse-grained importer, which is then gradually refined. In this paper we propose an approach to "agile modeling" that exploits island grammars to extract initial coarse-grained models, parser combinators to enable gradual refinement of model importers, and various heuristics to recognize language structure, keywords and other language artifacts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gas diffusion research in soils covers, to a large extent, the transport behavior of practically insoluble gases. We extend the mathematical description of gas transport to include reactive gaseous components that hydrolyze in water such as SO2 and CO2. The path between the free atmosphere and the microporous niches is modeled by assuming penetration through gas-filled macropores, air-water phase transfer, and diffusion and speciation in the liquid phase. For hydrolyzable gases, the rate of mass transfer into and the total absorption capacity of the soil solution may be high. Both the capacity and the transfer rate are influenced by the soil-solution pH; for high pH, they become extremely high for SO2. The soil absorption of such gases is also influenced by soil structure. Well-aerated, near-neutral soils are a potentially important sink for SO2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The exposed Glarus thrust displays midcrustal deformation with tens of kilometers of displacement on an ultrathin layer, the principal slip zone (PSZ). Geological observations indicate that this structure resulted from repeated stick-slip events in the presence of highly overpressured fluids. Here we show that the major characteristics of the Glarus thrust movement (localization, periodicity, and evidence of pressurized fluids) can be reconciled by the coupling of two processes, namely, shear heating and fluid release by carbonate decomposition. During this coupling, slow ductile creep deformation raises the temperature through shear heating and ultimately activates the chemical decomposition of carbonates. The subsequent release of highly overpressurized fluids forms and lubricates the PSZ, allowing a ductile fault to move tens of kilometers on millimeter-thick bands in episodic stick-slip events. This model identifies carbonate decomposition as a key process for motion on the Glarus thrust and explains the source of overpressured fluids accessing the PSZ.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study investigates thermally induced tensile stresses in ceramic tilings. Daily and seasonal thermal cycles, as well as, rare but extreme events, such as a hail-storm striking a heated terrace tiling, were studied in the field and by numerical modeling investigations. The field surveys delivered temperature– time diagrams and temperature profiles across tiling systems. These data were taken as input parameters for modeling the stress distribution in the tiling system in order to detect potential sites for material failure. Dependent on the thermal scenario (e.g., slow heating of the entire structure during morning and afternoon, or a rapid cooling of the tiles by a rain storm) the modeling indicates specific locations with high tensile stresses. Typically regions along the rim of the tiling field showed stresses, which can become critical with respect to the adhesion strength. Over the years, ongoing cycles of thermal expansion–contraction result in material fatigue promoting the propagation of cracks. However, the installation of flexible waterproofing membranes (applied between substrate and tile adhesive) represents an efficient technical innovation to reduce such crack propagation as confirmed by both numerical modeling results and microstructural studies on real systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Point Distribution Models (PDM) are among the most popular shape description techniques and their usefulness has been demonstrated in a wide variety of medical imaging applications. However, to adequately characterize the underlying modeled population it is essential to have a representative number of training samples, which is not always possible. This problem is especially relevant as the complexity of the modeled structure increases, being the modeling of ensembles of multiple 3D organs one of the most challenging cases. In this paper, we introduce a new GEneralized Multi-resolution PDM (GEM-PDM) in the context of multi-organ analysis able to efficiently characterize the different inter-object relations, as well as the particular locality of each object separately. Importantly, unlike previous approaches, the configuration of the algorithm is automated thanks to a new agglomerative landmark clustering method proposed here, which equally allows us to identify smaller anatomically significant regions within organs. The significant advantage of the GEM-PDM method over two previous approaches (PDM and hierarchical PDM) in terms of shape modeling accuracy and robustness to noise, has been successfully verified for two different databases of sets of multiple organs: six subcortical brain structures, and seven abdominal organs. Finally, we propose the integration of the new shape modeling framework into an active shape-model-based segmentation algorithm. The resulting algorithm, named GEMA, provides a better overall performance than the two classical approaches tested, ASM, and hierarchical ASM, when applied to the segmentation of 3D brain MRI.