6 resultados para Structural complexity
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Species adapted to cold-climatic mountain environments are expected to face a high risk of range contractions, if not local extinctions under climate change. Yet, the populations of many endothermic species may not be primarily affected by physiological constraints, but indirectly by climate-induced changes of habitat characteristics. In mountain forests, where vertebrate species largely depend on vegetation composition and structure, deteriorating habitat suitability may thus be mitigated or even compensated by habitat management aiming at compositional and structural enhancement. We tested this possibility using four cold-adapted bird species with complementary habitat requirements as model organisms. Based on species data and environmental information collected in 300 1-km2 grid cells distributed across four mountain ranges in central Europe, we investigated (1) how species’ occurrence is explained by climate, landscape, and vegetation, (2) to what extent climate change and climate-induced vegetation changes will affect habitat suitability, and (3) whether these changes could be compensated by adaptive habitat management. Species presence was modelled as a function of climate, landscape and vegetation variables under current climate; moreover, vegetation-climate relationships were assessed. The models were extrapolated to the climatic conditions of 2050, assuming the moderate IPCC-scenario A1B, and changes in species’ occurrence probability were quantified. Finally, we assessed the maximum increase in occurrence probability that could be achieved by modifying one or multiple vegetation variables under altered climate conditions. Climate variables contributed significantly to explaining species occurrence, and expected climatic changes, as well as climate-induced vegetation trends, decreased the occurrence probability of all four species, particularly at the low-altitudinal margins of their distribution. These effects could be partly compensated by modifying single vegetation factors, but full compensation would only be achieved if several factors were changed in concert. The results illustrate the possibilities and limitations of adaptive species conservation management under climate change.
Resumo:
The detailed mechanistic aspects for the final starch digestion process leading to effective alpha-glucogenesis by the 2 mucosal alpha-glucosidases, human sucrase-isomaltase complex (SI) and human maltase-glucoamylase (MGAM), are poorly understood. This is due to the structural complexity and vast variety of starches and their intermediate digestion products, the poorly understood enzyme-substrate interactions occurring during the digestive process, and the limited knowledge of the structure-function properties of SI and MGAM. Here we analyzed the basic catalytic properties of the N-terminal subunit of MGAM (ntMGAM) on the hydrolysis of glucan substrates and compared it with those of human native MGAM isolated by immunochemical methods. In relation to native MGAM, ntMGAM displayed slower activity against maltose to maltopentose (G5) series glucose oligomers, as well as maltodextrins and alpha-limit dextrins, and failed to show the strong substrate inhibitory "brake" effect caused by maltotriose, maltotetrose, and G5 on the native enzyme. In addition, the inhibitory constant for acarbose was 2 orders of magnitude higher for ntMGAM than for native MGAM, suggesting lower affinity and/or fewer binding configurations of the active site in the recombinant enzyme. The results strongly suggested that the C-terminal subunit of MGAM has a greater catalytic efficiency due to a higher affinity for glucan substrates and larger number of binding configurations to its active site. Our results show for the first time, to our knowledge, that the C-terminal subunit of MGAM is responsible for the MGAM peptide's "glucoamylase" activity and is the location of the substrate inhibitory brake. In contrast, the membrane-bound ntMGAM subunit contains the poorly inhibitable "maltase" activity of the internally duplicated enzyme.
Resumo:
Several natural products derived from entomopathogenic fungi have been shown to initiate neuronal differentiation in the rat pheochromocytoma PC12 cell line. After the successful completion of the total synthesis program, the reduction of structural complexity while retaining biological activity was targeted. In this study, farinosone C served as a lead structure and inspired the preparation of small molecules with reduced complexity, of which several were able to induce neurite outgrowth. This allowed for the elaboration of a detailed structure-activity relationship. Investigations on the mode of action utilizing a computational similarity ensemble approach suggested the involvement of the endocannabinoid system as potential target for our analogs and also led to the discovery of four potent new endocannabinoid transport inhibitors.
Resumo:
The functioning and services of Central European forests are threatened by global change and a loss of biodiversity. Nutrient cycling as a key forest function is affected by biotic drivers (e.g., dominant tree species, understory plants, soil organisms) that interact with abiotic conditions (e.g., climate, soil properties). In contrast to grassland ecosystems, evidence for the relationship of nutrient cycles and biodiversity in forests is scarce because the structural complexity of forests limits experimental control of driving factors. Alternatively, observational studies along gradients in abiotic conditions and biotic properties may elucidate the role of biodiversity for forest nutrient cycles. This thesis aims to improve the understanding of the functional importance of biodiversity for nutrient cycles in forests by analyzing water-bound fluxes of nitrogen (N) and phosphorus (P) along gradients in biodiversity in three regions of Germany. The tested hypotheses included: (1) temperate forest canopies retain atmospheric N and retention increases with increasing plant diversity, (2) N release from organic layers increases with resource availability and population size of decomposers but N leaching decreases along a gradient in plant diversity, (3) P leaching from forest canopies increases with improved P supply from recalcitrant P fractions by a more diverse ectomycorrhizal fungal community. In the canopies of 27 forest stands from three regions, 16 % to 51 % of atmospheric N inputs were retained. Regional differences in N retention likely resulted from different in N availability in the soil. Canopy N retention was greater in coniferous than in beech forests, but this was not the case on loessderived soils. Nitrogen retention increased with increasing tree and shrub diversity which suggested complementary aboveground N uptake. The strength of the diversity effect on canopy N uptake differed among regions and between coniferous and deciduous forests. The N processing in the canopy directly coupled back to N leaching from organic layers in beech forests because throughfall-derived N flushed almost completely through the mull-type organic layers at the 12 studied beech sites. The N release from organic layers increased with stand basal area but was rather low (< 10 % of annual aboveground litterfall) because of a potentially high microbial N immobilization and intensive incorporation of litter into the mineral soil by bioturbation. Soil fauna biomass stimulated N mineralization through trophic interactions with primary producers and soil microorganisms. Both gross and net leaching from organic layers decreased with increasing plant diversity. Especially the diversity but not the cover of herbs increased N uptake. In contrast to N, P was leached from the canopy. Throughfall-derived P was also flushed quickly through the mull-type organic layers and leached P was predominantly immobilized in non directly plant-available P fractions in the mineral soil. Concentrations of plant-available phosphate in mineral soil solution were low and P leaching from the canopy increased with increasing concentrations of the moderately labile P fraction in soil and increasing ectomycorrhiza diversity while leaf C:P ratios decreased. This suggested that tree P supply benefited from complementary mining of diverse mycorrhizal communities for recalcitrant P. Canopy P leaching increased in years with pronounced spring drought which could lead to a deterioration of P supply by an increasing frequency of drought events. This thesis showed that N and P cycling in Central European forests is controlled by a complex interplay of abiotic site conditions with biological processes mediated by various groups of organisms, and that diverse plant communities contribute to tightening the N cycle in Central European forests and that diverse mycorrhizal communities improve the limited P availability. Maintaining forest biodiversity seems essential to ensure forest services in the light of environmental change.
Resumo:
Our approaches to the use of EEG studies for the understanding of the pathogenesis of schizophrenic symptoms are presented. The basic assumptions of a heuristic and multifactorial model of the psychobiological brain mechanisms underlying the organization of normal behavior is described and used in order to formulate and test hypotheses about the pathogenesis of schizophrenic behavior using EEG measures. Results from our studies on EEG activity and EEG reactivity (= EEG components of a memory-driven, adaptive, non-unitary orienting response) as analyzed with spectral parameters and "chaotic" dimensionality (correlation dimension) are summarized. Both analysis procedures showed a deviant brain functional organization in never-treated first-episode schizophrenia which, within the framework of the model, suggests as common denominator for the pathogenesis of the symptoms a deviation of working memory, the nature of which is functional and not structural.